Secured documents identified with anti-stokes fluorescent...

Stock material or miscellaneous articles – Transfer or decalcomania

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S399000, C428S389000, C428S457000, C428S916000, C252S30140R, C235S491000

Reexamination Certificate

active

06686074

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides a secured document identified by an authenticating element comprising a composition capable of anti-Stokes fluorescence that includes (a) an ion capable of absorbing electromagnetic radiation, and (b) an ion capable of emitting electromagnetic radiation, wherein the wavelength of the emitted electromagnetic radiation is shorter than the wavelength of the absorbed electromagnetic radiation, and the concentrations of components (a) and (b) are adjusted to achieve concentration quenching.
BACKGROUND OF THE INVENTION
When a phosphor or other luminescent material emits light, in general, it emits light according to Stokes' Law, which provides that the wavelength of the fluorescent or emitted light is always greater than the wavelength of the exciting radiation. While Stokes' Law holds for the majority of cases, it does not hold in certain instances. For example, in some cases, the wavelength is the same for both the absorbed and the emitted radiation. That is, the efficiency appears to be perfect or unity. This is known as resonance radiation.
In other cases, Stokes' Law does not hold where the energy emitted is greater than the energy absorbed. This is known as anti-Stokes emission. This may be due, at least in part, to the fact that at the time a photon is absorbed by a molecule, a collision with one or more other molecules adds extra energy to the absorbing molecule. Consequently, the absorbing molecule receives excess energy over and above what it received from absorbing the photon, and it is promoted to a higher excited state than it would have been promoted to from the original absorption event alone. The molecule is then free to decay from this super-excited state and emit a more energetic photon than it originally absorbed. Anti-Stokes materials typically absorb infrared radiation in the range of about 700 to about 1300 nm, and emit in the visible spectrum.
The use of anti-Stokes luminophores was first mentioned in 1974 by Malmberg et al., in Swedish patent application nos. 7705938-4 and 7413480-0, which correspond to German Patent No. 2,547,768. Further, Bratchley et al., British Patent Nos. 2,258,659 and 2,258,660, proposed oxysulfide anti-Stokes luminophores are materials that could be used to code security documents. However, Malmberg and Bratchley only suggest using Y
2
O
2
S as a basic lattice material.
Muller et al., WO 00/60527, proposed anti-Stokes luminophore oxysulfide compositions that are stimulated with a pulsed 980 nm laser in order to increase the reliability of detection. Muller also suggested that the excitation conditions should be such that Class I lasers (which have an output power less than 1 mW and are therefore, not harmful to the human eye) can be used. This can be achieved by accurately matching the pulse frequency and the pulse interval to the build-up characteristics of the luminophore used. The laser parameters are adjusted so that the resulting luminescence intensities are at least 50%-90% of the saturation intensity, i.e., the intensity at the steady state laser excitation, of the respective fluorescent substance. Muller suggests Y
2
O
2
S:Yb, Er, Y
2
O
2
S:Yb, Tm and Gd
2
O
2
S:Yb, Er are suitable luminophores.
There are innumerable different types of documents and things which are subject to counterfeiting or forgery, and many different techniques and devices have been developed for determining the authenticity of a document or a thing. By way of example only, documents which are particularly in need of authentication include bank notes, identification papers, passports, packagings, labels and stickers, driver's licenses, admission tickets and other tickets, tax stamps, pawn stamps, and stock certificates. As used herein, the term “secured document” includes any document or thing which is provided with a distinguishing device (whether printed or not) which can be used to authenticate, identify or classify the document.
Furthermore, in addition to determining the authenticity of a secured document, it is sometimes useful to also determine the nominal value of the document or the nature of the document. For example, in a postal system, it is not only necessary to establish the authenticity of the postal stamps and/or release stamps, it may also be beneficial to determine the value of the postage stamps as they are passed through a postal sorting machine.
Accordingly, as used herein, the term “authentication element” is intended to refer to any “device” which may be printed on, or otherwise attached to, a secured document for the purpose of authenticating the document or for the purpose of determining its value and/or type or any other characteristic. Likewise “authenticity” is meant to encompass value, type or other characteristic of a secured document, as well as the genuineness of a document or thing.
It is known to provide secured documents such as bank notes with an authentication element in the form of a distinctive luminescent ink which, when excited by a light of a predetermined wavelength, will emit a distinctive low intensity radiation that can be detected and analyzed as a means for authenticating a secured document. German Patent No. DE 411 7911 A1 discloses such a system which includes a conically expanding fiber optical waveguide and an optical processing system. The radiation from the object to be tested can be collected over a large spatial angle with the narrow cross-sectional end of the fiber optical waveguide. Because of the cross sectional transformation, the radiation emerges from the fiber at a significantly smaller angle, which is coordinated with the cone angle of the optical processing system.
With such a system it is possible to detect relatively low intensity distinguishing luminescent authenticity elements. However, the magnitude of the distinguishing luminescent elements must exceed a certain threshold. The system is therefore still relatively insensitive. Because of the use of a conical fiber, there is also the disadvantage that only a small region of the document can be monitored and checked. Moreover, the system may fail if the authenticity element is disposed at certain places in the document. Further, documents such as postage stamps cannot be identified with this arrangement at the high speeds customary in sorting, distributing and/or counting machines. In the case of laser excitation, characteristic pulse responses, which are of decisive importance for identifying authenticity, also may not be recognized and evaluated.
SUMMARY OF THE INVENTION
The present invention provides a secured document comprising a composition capable of anti-Stokes fluorescence comprising
(a) an ion capable of absorption of electromagnetic radiation,
(b) an ion capable of emitting electromagnetic radiation, and
(c) a matrix composition comprising gadolinium, yttrium, lanthanum, and thulium.
wherein the wavelength of the emitted electromagnetic radiation is shorter than the wavelength of the absorbed electromagnetic radiation, and wherein the concentrations of (a) and (b) are adjusted to achieve concentration quenching of anti-Stokes luminescence.
In a preferred embodiment, the secured document includes a composition comprising a gadolinium oxysulfide selected from the group consisting of
(a) a composition of the formula (Gd
(1-x-y)
Yb
x
Tm
y
)
2
O
2
S; and
(b) a composition of the formula (Gd
(1-x-y)
)
2
O
2
S:Yb
x
Tm
y
,
wherein x and y are numbers greater than 0, Yb is the ion capable of absorption and Tm is the ion capable of emission. Preferably, the composition has the formula (Gd
(1-x-y)
)
2
O
2
S:Yb
x
Tm
y
, wherein x is 0.05≦x≦0.80 and y is 0.0001y≦0.10, and optimally x is 0.20≦x≦0.60 and y is 0.0001≦0.05, and the composition provides a read-out speed of up to 10 m/s, and preferably between about 3 and about 6 m/s.
The present invention also provides a secured document wherein the composition described above is incorporated into an authentication element comprising a printing ink or pigment. Preferably, the authentication element has a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Secured documents identified with anti-stokes fluorescent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Secured documents identified with anti-stokes fluorescent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Secured documents identified with anti-stokes fluorescent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3344671

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.