Secure message forwarding system detecting user's...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000, C713S150000, C380S255000

Reexamination Certificate

active

06732101

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to computing systems and more particularly to a method and system for providing secure data transmissions between Internet users.
BACKGROUND OF THE INVENTION
The Internet is a global network of computers that uses a common communication protocol, the Transfer Control Protocol/Internet Protocol (TCP/IP), to transmit data from one location to another. Many application specific tasks, such as E-mail transmission and file transfer, are not directly supported by TCP/IP. Instead, support for these services is implemented by application specific protocols that in turn rely on TCP/IP for basic data transport services. One problem that is relatively unknown to individuals that make use of the Internet is the ease by which information can be obtained during transmission by unauthorized eavesdroppers. For example, most E-mail transmissions over the Internet are sent in cleartext. Cleartext is unencrypted data that can be intercepted anywhere along the path between a sender and the recipient.
Accordingly, sensitive business or personal information should not be transmitted in cleartext over the Internet. To do so is to risk its publication. To avoid this risk, sensitive data is often sent by courier services or other means at great cost.
Encryption mechanisms can be used to ensure the integrity of information sent over the Internet. Two common encryption techniques, symmetric key encryption and public key encryption, are described below. In a symmetric key encryption, a unique key is identified and used by the sender to encrypt and by the receiver to decrypt a message. In public key encryption, separate keys are used to encrypt and to decrypt.
Both symmetric key and public key encryption require a key exchange. That is, where symmetric key encryption is used, the sender must provide the recipient with the key so that the recipient can decrypt an associated message. In public key encryption, the key exchange includes the publication of a recipient's public key that in turn is used by the sender to encrypt a message. A corresponding private key is used by the recipient to subsequently decrypt the encrypted message. Publication can be by posting the public key, for example, to a central site, or by providing the public key directly to the sender. In each of these scenarios, the recipient's computer must include a decryption engine (software) that uses an appropriate key to decrypt the message. Because there are a variety of encryption algorithms being used on the Internet, a recipient needs to have many different types of decryption engines installed to be able to receive secure messages universally. If the intended recipient does not have a particular decryption engine, the sender cannot utilize that particular encryption technique to send the secure message.
Often a sender will desire to send the same information, for example, over the Internet, to plural recipients who have different decryption engines installed. This adds an additional level of difficulty to the transmission process, because the sender must select the appropriate encryption engine for each recipient. For those recipients who do not have any decryption engine installed, the message simply cannot be sent securely.
With the promulgation of the Internet, a globally available decryption engine has been installed in almost all new personal computers in the form of a web browser that supports the secure socket layer (SSL) protocol. What is desirable is a system that allows the recipient to use this universally available decryption engine to receive secure messages from any sender regardless of what encryption engine the sender uses. In addition, the system should allow a sender to use one encryption engine to deliver the message to any recipient regardless of what decryption engine the recipient uses. In case the sender and the recipient have compatible encryption and decryption engines, the message may be sent directly. In case the sender's encryption engine and the recipient's decryption engine are not compatible, the system will translate the message format to ensure universal interoperability between encryption and decryption engines
SUMMARY OF THE INVENTION
A system and method for providing secure E-mail services. The system includes a forwarding service operable to receive an E-mail message for delivery to a recipient, store the message at least temporarily in a storage means and check for recipient preferences for delivery of the E-mail message content. If no preference is specified and if Web-based delivery is specified, the system provides an E-mail notification to the recipient including a secure link to the message and responds to a page request from the recipient indicating the message including extracting the message from the storage means, formatting the message as a page and delivering the page to the recipient's web browser. If a preference for delivery other than Web-based is specified, the system delivers the message in accordance with the recipient's preference.
Implementations of the invention can include one or more of the following advantages. Messages can be encrypted using any available encryption means at the sender and sent to a forwarding service. The forwarding service can forward the message to each recipient according to the recipient's decryption capability and preference.
A system is provided for secure E-mail services. Secure E-mail messages can be composed or generated using the secure messaging system (using a particular encryption service), the result of which can be attached as a MIME or SMIME message to a conventional E-mail message for transfer to a recipient. In the event the recipient does not have the required decryption capabilities, the E-mail message can be forwarded to a forwarding service. The forwarding service provides an E-mail notification to the recipient of the message. A recipient is not required to have a special viewer or reader and can merely retrieve the message through a web browser by linking to the forwarding service via a secure link such as SSL. Alternatively, if the recipient has designated a preference for delivery, the message can be re-encrypted according to the recipient's preference and delivered to the recipient directly in accordance with the predefined delivery instructions.
These and other advantages of the present invention will become apparent from the following description and from the claims.


REFERENCES:
patent: 5509000 (1996-04-01), Oberlander
patent: 5682460 (1997-10-01), Hyziak et al.
patent: 5790790 (1998-08-01), Smith et al.
patent: 5870549 (1999-02-01), Bobo, II
patent: 6023700 (2000-02-01), Owens et al.
patent: 6061448 (2000-05-01), Smith et al.
patent: 6081899 (2000-06-01), Byrd
patent: 6182118 (2001-01-01), Finney et al.
patent: 6198824 (2001-03-01), Shambroom
patent: 6385655 (2002-05-01), Smith et al.
patent: 6442600 (2002-08-01), Anderson
patent: 6446115 (2002-09-01), Powers

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Secure message forwarding system detecting user's... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Secure message forwarding system detecting user's..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Secure message forwarding system detecting user's... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249308

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.