Seat weight sensor

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C177S208000, C701S041000

Reexamination Certificate

active

06286861

ABSTRACT:

TECHNICAL ART
The instant invention generally relates to sensors and systems for measuring weight and more particularly to a weight sensor for measuring the weight of occupants and other objects in a motor vehicle seat such as useful determining occupant seating conditions for controlling a vehicle safety restraint system.
BACKGROUND OF THE INVENTION
A vehicle may contain automatic safety restraint actuators that are activated responsive to a vehicle crash for purposes of mitigating occupant injury. Examples of such restraint actuators include air bags, seat belt pretensioners, and deployable knee bolsters.
One objective of an automatic safety restraint system is to mitigate occupant injury, thereby not causing more injury with the automatic restraint system than would be caused by the crash had the automatic restraint system not been activated. Notwithstanding the protective benefit of these automatic safety restraint actuators, there is generally both a risk and a cost associated with the deployment thereof. Generally, it is desirable to only activate automatic safety restraint actuators when needed to mitigate injury because of the expense of replacing the associated components of the safety restraint system, and because of the potential for such activations to harm occupants. This is particularly true of air bag restraint systems, wherein occupants too close to the air bag at the time of deployment—i.e. out-of-position occupants—are vulnerable to injury or death from the deploying air bag even when the associated vehicle crash is relatively mild. Moreover, occupants who are of small stature or with weak constitution, such as children, small adults or people with frail bones are particularly vulnerable to injury induced by the air bag inflator. Furthermore, infants properly secured in a normally positioned rear facing infant seat (RFIS) in proximity to a front seat passenger-side air bag are also vulnerable to injury or death from the deploying air bag because of the close proximity of the infant seat's rear surface to the air bag inflator module.
Air bag inflators are designed with a given restraint capacity, as for example, the capacity to protect an unbelted normally seated fiftieth percentile occupant when subjected to a 30 MPH barrier equivalent crash, which results in associated energy and power levels which can be injurious to out-of-position occupants. While relatively infrequent, cases of injury or death caused by air bag inflators in crashes for which the occupants would have otherwise survived relatively unharmed have provided the impetus to reduce or eliminate the potential for air bag inflators to injure the occupants which they are intended to protect.
One technique for mitigating injury to occupants by the air bag inflator is to reduce the power and energy levels of the associated air bag inflator, for example by reducing the amount of gas generant in the air bag inflator, or the inflation rate thereof. This reduces the risk of harm to occupants by the air bag inflator while simultaneously reducing the restraint capacity of the air bag inflator, which places occupants a greater risk for injury when exposed to higher severity crashes.
Another technique for mitigating injury to occupants by the air bag inflator is to control the rate of inflation or the capacity of the inflator responsive to a measure of the severity of the crash. However, the risk of injury to such occupants would not be mitigated under the conditions of higher crash severity when the inflator is intentionally made aggressive in order to provide sufficient restraint for normally positioned occupants.
Yet another technique for mitigating injury to occupants by the air bag inflator is to control the activation of the air bag inflator responsive to the presence, position, and size of the occupant, or to the severity of the crash. For example, the air bag inflator can be disabled if the occupant weight is below a given threshold. Moreover, the inflation capacity can be adjusted by controlling the number of inflation stages of a multi-stage inflator that are activated. Furthermore, the inflation power can be adjusted by controlling the time delay between the firings of respective stages of a multi-stage inflator.
One measure of restraint capacity of an air bag inflator is the amount of occupant kinetic energy that can be absorbed by the associated air bag system, whereby when the occupant collides with the gas filled air bag, the kinetic energy of the occupant is converted to potential energy via the pressurization of the air bag, and this potential energy is dissipated by venting pressurized gases from the air bag. As a vehicle in a crash is decelerated, the velocity of an unrestrained occupant relative to the vehicle increases. Preferably, the occupant restraint process is commenced early in the crash event so as to limit the amount of occupant kinetic energy that must be absorbed and thereby minimize the associated restraint forces and accelerations of and loads within the occupant. If the occupant were a simple inertial mass without friction relative to the vehicle, the kinetic energy of the occupant would be given by ½ M·V
2
, where M is the mass of the occupant and V is the occupant velocity relative to the vehicle. If a real occupant were represented by an interconnected set of bodies, some of which have friction relative to the vehicle, each body of which may have differing velocities relative the vehicle, the above equation would apply to the motion of the center of gravity of the occupant. Regardless of the representation, occupants of larger mass will have a larger kinetic energy for the same velocity relative to the vehicle. Therefore, an occupant weight sensor is useful in an air bag system with variable restraint capacity to enable the restraint capacity to be preferentially adapted to the weight, or mass, of the occupant.
Except for some cases of oblique or side-impact crashes, it is generally desirable to not activate an automatic safety restraint actuator if an associated occupant is not present because of the otherwise unnecessary costs and inconveniences associated with the replacement of a deployed air bag inflation system. Occupant presence can be detected by a seat weight sensor adapted to provide either a continuous measure of occupant weight or to provide a binary indication if the occupant weight is either above or below a specified weight threshold.
Known seat weight sensors comprise one or more pads employing force sensitive resistive (FSR) films. These arrangements are typically used as weight threshold systems to disable a passenger air bag when the seat is empty. Load cells attached to the seat mounting posts have also been used in research applications. Mechanisms that use string based potentiometers to measure downward seat displacement have also been investigated.
Such known arrangements suffer from several drawbacks. First, variable resistance force sensors have limited sensitivity and in some situations are not sensitive enough to put directly under a seat pad while still achieving the desired response. Second, the threshold weight system provides only very limited information. For example, such arrangements provide no indication as to the size of an occupant. Third, the resistance values of known variable force resistor change with temperature, and are subject to drift over time with a constant load on the sensor.
Furthermore, other known sensing arrangements do not otherwise provide suitable results. For example, the use of load cells is prohibitively expensive for large-scale commercial applications. Strain gauges of any type may be impractical because of the difficulty in applying them to the strained material. Finally, mechanical string potentiometer based weight sensors are complex, and subject to failure from stretching of the string.
The prior art also teaches the use of seat weight sensors outside the automotive environment, for example as a means for disabling the activation of either a boat or an industrial machine if the operator is not pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Seat weight sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Seat weight sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seat weight sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2516841

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.