Buckles – buttons – clasps – etc. – Separable-fastener or required component thereof – Including member having distinct formations and mating...
Reexamination Certificate
1999-11-16
2001-07-31
Sakran, Victor N. (Department: 3626)
Buckles, buttons, clasps, etc.
Separable-fastener or required component thereof
Including member having distinct formations and mating...
C024S637000, C024S641000, C024S642000
Reexamination Certificate
active
06266855
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a buckle for a seat belt.
DISCUSSION OF THE PRIOR ART
The buckle taught by DE 195 45 has a guide channel inside a buckle frame, into which a tongue connected to a seat belt can be inserted. An ejector is guided in the guide channel, upon which ejector is acting an ejector spring in the ejection direction, opposite to the insertion direction. Furthermore, a locking element is moveably mounted on the buckle frame. The locking element can be moved into a locking position for locking the tongue introduced into the guide channel and into a release position for releasing the tongue. A securing element is moveably mounted on the buckle frame, which securing element can be moved into a securing position for holding the locking element in its locking position and into a release position for releasing the locking element. Furthermore, a support is provided, which holds the securing element in the securing position upon excessive acceleration and/or deceleration. This ensures that the securing element remains in its securing position, even during high acceleration and/or deceleration of the buckle, such as, for example, upon retensioning of the buckle via a belt tightener acting upon the buckle. The locking element is thereby secured in its locking position, so that the desired tightening of the belt, which is held in the buckle, is obtained.
As a result of its inertia and the inertia of the support, the securing element is held in the securing position in the acceleration phase of the retensioning procedure. Upon deceleration, a compensating mass, which is linearly guided in the guide channel on the buckle frame, acts upon the securing element through a lever arm and the support, holding the securing element in the securing position. The ejector is supported through the ejector spring on the compensating mass. An actuating lever, which is formed as an angle lever, is pivotably mounted on the securing element, such that the insertion movement of the tongue can be transmitted through the actuating lever onto the locking element in order to ensure its movement into the locking position.
In the seat belt buckle known from EP 0 212 507, a compensating mass mounted on a lever arm acts through a support (plunger) upon the securing element in the acceleration phase of the retensioning procedure. In the deceleration phase, however, the effect of the lever on which the compensating mass is mounted, is cancelled due to the inertia of the compensating mass which tends to continue its movement in the direction of the acceleration phase of the retensioning procedure, such that an absolutely secure holding of the securing element in the securing position by means of the compensating mass is no longer ensured.
SUMMARY OF THE INVENTION
The seat belt buckle of the present invention has a blocking device mounted on, or connected, to a securing element, which blocking device may be designed as an angle lever, as known from EP 0 777 984 A2. The blocking device is moved into a blocking position when the locking element is in the locking position. The securing element is thus held in its securing position, against a movement in the release position. The blocking device is thereby held in the blocking position by the ejector. When the blocking device is designed as an angle lever, it has two functions. Upon introduction of the buckle tongue, the blocking device in the same manner as the actuating lever known from EP 0 777 984 A2, is rotated by the ejector mass, such that the locking element is pushed into its final locking position. The other function consists in holding the blocking device in its blocking position by the ejector. The securing element is thereby held against movement in the release position. The locking element is thus secured in its locking position.
The blocking device is located in its blocking position, upon acceleration of the buckle, for example upon a retensioning procedure, as well as upon deceleration of this accelerated movement. Likewise, in those embodiments in which, upon deceleration, the ejector, as a result of its inertia, performs a movement against the force of an ejector spring inside the guide channel, the invention ensures that the blocking device is held in its blocking position.
This may be achieved by appropriately designing the blocking device contour on the ejector. The longitudinal extension of the blocking device contour is dimensioned such that the blocking device remains engaged with the blocking device contour throughout the movement of the ejector from its normal position in the locking position to a rear abutment position, and is thus held in the blocking position.
When the blocking device is designed as an angle lever, one of the two lever arms may engage the ejector, especially the blocking device contour on the ejector. The other lever arm may be held in abutment with a buckle part, preferably with the locking element in its locking position, such as to prevent a movement into the release position. The blocking device is held in this blocking position between this abutment and the ejector, especially the blocking device contour on the ejector. Since the blocking device is mounted on the securing element or connected thereto, the securing element, which may be designed as a peg in a known manner, is held in its securing position.
A deformable part may be provided on the ejector. When the buckle movement which was accelerated in the insertion direction is then decelerated, in particular the retensioning movement, the deformable part acts as an energy absorbing means upon impact of the ejector, as a result of its inertia, on a frame-fixed abutment, which delimits the backward movement of the ejector. Bounce movements of the other buckle components, which may occur as a result of the hard impact of the ejector, are thus prevented.
The securing element may be spring biased. To this effect, a spring may be provided, which is linearly guided and supported on the buckle frame. The spring bias is directed such that in the locking position the securing element is pressed against an abutment on the buckle frame. When the locking element is in its unlocking position, the securing element is pressed against a holding surface on the locking element, whereby the locking element is held in its unlocked position inside the buckle frame.
The invention provides an impact-resistant seat belt buckle, comprising fewer components. A secured locking of the locking element, engaging the tongue, is ensured upon excessive acceleration, as for example upon retensioning of the buckle, as well as jerky deceleration at the end of the retensioning movement.
REFERENCES:
patent: 4550474 (1985-11-01), Doty et al.
patent: 4597141 (1986-07-01), Wier
patent: 5008989 (1991-04-01), Wedler et al.
patent: 5704099 (1998-01-01), Cahill
patent: 5784766 (1998-07-01), Downie et al.
patent: 19545899 (1997-06-01), None
patent: 0212507 (1986-08-01), None
patent: 0485656 (1990-11-01), None
patent: 0777984 (1996-12-01), None
patent: 2151691 (1985-07-01), None
patent: 2173243 (1986-10-01), None
patent: 2271378 (1994-04-01), None
patent: WO8103603 (1981-12-01), None
Krauss Walter
Schrott Thomas
Schwald Stephan
Specht Martin
Breed Automotive Technology Inc.
Drayer Lonnie
Sakran Victor N.
LandOfFree
Seat belt buckle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Seat belt buckle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seat belt buckle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2514927