Illumination – Light source and modifier – Including reflector
Reexamination Certificate
2001-12-20
2003-08-12
Cariaso, Alan (Department: 2875)
Illumination
Light source and modifier
Including reflector
C362S268000, C362S308000, C362S331000
Reexamination Certificate
active
06604843
ABSTRACT:
FIELD OF THE INVENTION
This invention relates in general to searchlight type light devices including underwater light devices and automobile headlights and the like and, in particular, to a searchlight type light device including an optical collector interposed between a source and a reflector for improved beam optical density.
BACKGROUND OF THE INVENTION
Search lights are used in a number of applications including vehicle headlights, underwater lights, search lights for emergency vehicles such as police cars, helicopters, etc., and the like. In many of these applications, it is desired to provide a narrow beam of light. A narrow beam of light may be desired to provide more effective illumination at large distances, greater intensity for a given light source at a given distance and to reduce the intensity of stray light outside of the desired area of illumination that may, for example, annoy oncoming motorists or pose a safety risk.
Search lights typically include a light source, a reflector behind the light source and a lens in front of the light source. The reflector and lens are intended to act in concert to collect light from the source and collimate or focus the light into a desired beam. Much development work has been directed to the design of the reflector and lens so as to produce a narrow beam and significant advances have been made in this regard.
One known light device is described in Russian patent application no. RF 98109712 “Headlight for Automobiles” (priority dated May 19, 1999 and published Feb. 27, 2000). That device includes a reflector, a refractor, and a light source. The reflector has a base surface of spherical, parabolic, elliptical or hyperbolic type and is equipped with convex or concave basic reflecting elements whose working surface is shaped as a Bezier surface or looks like a circle or an ellipse in the vertical and horizontal cross-sections. In addition, the basic reflecting elements are equipped with concentrating reflecting elements whose vertical dimension is less than or equal to that of the basic reflecting elements, and the horizontal dimension is less than or equal to that of the basic reflecting elements.
Another known light device is described in Russian patent no. RF 2115060 “Headlight for Transport Vehicles” (priority dated Dec. 16, 1993 and published Jul. 10, 1998). That headlight is a projection type headlight and includes a reflector, a light source, a screen and a lens. The reflector is a concave surface shaped as a paraboloid, the light source is located inside this reflector, and the lens is located so that its optical axis coincides with the reflector's optical axis, and its focal point coincides with the focal point of the same reflector.
A further known device is described in Russian patent no. RF 2149307 “Light Device” (priority dated Dec. 1, 1998 and published May 20, 2000. That device includes a light source, an ellipsoidal reflector, a lens projection system optically aligned with the ellipsoidal reflector, and a reflector-diaphragm located between the ellipsoidal reflector and the projection system. The light source is located in the ellipsoidal reflector's geometrical center, and the ellipsoidal reflector proper and the lens projection system are so arranged relative to each other that their focal points coincide.
Devices such as described in these patents typically have limited luminous flux intensity or optical density in the transmitted beam, e.g., because the direct association of the source with the reflector provides a beam diameter at least as great as that of the reflector, because the lens projection system provides a collimated or diverging beam or because the devices otherwise generally provide a beam that is not compressed along its axis.
SUMMARY OF THE INVENTION
An important advantage of this invention is the provision of a light device where the light beam is minimally divergent or compressed along the optical axis, thereby allowing for increased intensity over an illumination range of interest. In accordance with one aspect of the invention, the light device includes a light source, a main concave reflector, and a lens projection system, the main concave reflector and the lens projection system being aligned, and the light source being located between the reflector and the lens projection system and on the same optical axis. The device includes a main collecting pre-reflector lens mounted between the light source and the main reflector. Preferably, the main reflector's concave surface is implemented as a segment of sphere, and the light source is located in the focal point of this main reflector. The main collecting pre-reflector lens preferably has a focal length exceeding the main reflector's focal distance by a factor of 1.25-2.0, its diameter is preferably equal to or exceeds the main reflector's diameter, and this lens is preferably located at a distance from the main reflector which does not exceed half of the distance from the main reflector to the light source.
According to another aspect of the invention, a collecting pre-reflector lens is so mounted in the light device that it can be displaced along its optical axis, which facilitates a precise optical adjustment of the entire device resulting in a denser and narrower optical beam.
In accordance with a further aspect of the invention, a diaphragm can be mounted before the lens projection system in the light device, thus reducing the level of the transmitted radiation component that has not been compressed in a narrow light beam by the device.
According to a still further aspect of the present invention, an auxiliary concave reflector and a second collecting pre-reflector lens can be provided in the light device. In that case, the dimensions and shape of the auxiliary reflector are preferably similar to those of the main concave reflector, but a through hole is cut in the wall of the auxiliary reflector, no less in diameter than half of the point light source diameter, but no bigger than two diameters of such point light source, the axis of this through hole coinciding with the auxiliary reflector's optical axis. All characteristics of the second collecting pre-reflector lens are preferably similar to the characteristics of the main collecting pre-reflector lens. The auxiliary concave reflector and the other collecting pre-reflector lens are preferably located opposite to the light source relative to the main concave reflector and the main biconvex lens, symmetrically with them, and so that the optical axes of the auxiliary concave reflector and the other collecting pre-reflector lens coincide with the optical axis of the main concave reflector. The auxiliary concave reflector can be mounted at such a distance from the main concave reflector that the focal points of both reflectors will coincide.
An important aspect of the present invention relates to the use of a focusing or some other lens mounted between the light source and the reflector. Such a lens collects the radiation coming from the light source in a light spot of small diameter on the reflector. The reflector additionally focuses the radiation collected in the light spot in an even narrower light spot on the collecting lens. The luminous radiation passing from the light spot through the lens mounted before the reflector is collected in the focal point of the lens. Since the luminous radiation passing through the pre-reflector lens comes from a light spot of small diameter, the divergence of the radiation focused by this pre-reflector lens is low. Therefore, when this radiation reaches the lens projection system mounted behind the light source, the lens projection system shapes this radiation as a minimum-divergence or compressed narrow light beam. In addition, this narrow light beam is formed of the radiation focused on the reflector, and so its intensity is high: output measurements have shown that its intensity is at least twice as great as the intensity of the radiation produced by certain known devices. Even taking into consideration the fact that a pr
Cariaso Alan
Hyperboloid Corporation
Marsh & Fischmann & Breyfogle LLP
LandOfFree
Searchlight with improved optical density does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Searchlight with improved optical density, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Searchlight with improved optical density will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3111054