Seamless holographic transfer using laser generated optical...

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121820

Reexamination Certificate

active

06222157

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to a new apparatus and associated methods, including products produced therefrom, in the field of continuous microscopic embossing. More specifically, the present invention is directed to the use of an energy source, such as lasers, for generating an optical diffraction effect pattern onto a selected substrate, such as a relatively large diameter and large width metal roll, which roll provides for the continuous and reliable production of decorative paper or film.
DESCRIPTION OF THE PRIOR ART
As the present invention relates to the creation of optical effect patterns via preferred laser techniques, and more specifically, to an entirely new method and associated apparatus for micro-embossing applying preferred excimer laser technology, the pertinent art to be reviewed is necessarily focused on three major areas: 1. the general state of micro-embossing methodology; 2. the current use of lasers with focused scanning beams for direct writing on given substrates; and 3. excimer lasers, and excimer laser applications.
1. Micro-Embossing Technology
An excellent review of holographic image transfer technology onto decorative mediums, such as, for example, polyethylene terephthalate (PET) film, can be found in U.S. Pat. No. 5,327,825. As noted therein, holographic images, patterns or designs, are typically transferred or micro-embossed onto a web or length of material (for instance a decorative foil on a carrier web) by a roller which carries on its outer cylindrical surface a shim having a holographic image, pattern or design. Heat and pressure are used to micro-emboss the hologram on the shim from the roller to the web or length of decorative material. This micro-embossing technique is conventional.
That is, the shim which is wrapped around the roller is established in planar form by a micro-embossing operation by which a first small nickel shim which carries the hologram is attached to a stamp, and the hologram is micro-embossed into a planar plastic sheet by a step and repeat process. To facilitate this step and repeat operation, the planar stamping surface is indexed linearly in the X and Y directions across the planar plastic sheet until the micro embossing is completed on the entire planar surface. The sheet is then sprayed with a silver conductive spray and subsequently placed in an electro-plating bath to form a durable nickel shim. This nickel shim is removed from the plastic sheet and can be wrapped around a cylinder to form a cylindrical embossing die.
It is plainly evident that the above conventional micro-embossing technique is a long and involved process, and once the nickel shim is wrapped around the cylinder, the ends of the nickel shim will form a side-to-side break in the holographic pattern so that the resulting holographic foil includes a production seam made after each revolution of the cylinder. It is also noted that there will be “recombining” seams created by “recombining” the design by the step and repeat process.
Various solutions have therefore been proposed in the prior art to deal with the various seams or gaps, which detract, as noted, from the appearance of the replications, some of the more prominent ones summarized below.
For example, U.S. Pat. No. 4,923,572 is directed to a cylindrical embossing tool which can be used for embossing a web of material without leaving seams. Described in this patent is a complex method wherein the cylindrical embossing tool is made by first placing in conforming relationship a seamless coating or layer of an embossable material around the exterior surface of a rigid cylinder. A desired image or pattern is stamped over substantially the entire exposed surface of the embossable material supported by the rigid cylinder. An electroform of the stamped image is then made by electrodeposition of metal such as nickel thereon and a reinforcement layer is applied over the imaged electroform. Then the rigid cylinder is removed to leave, in the form of a cylinder, an image carrier of the embossed layer, the electroformed image and the reinforcement layer. The embossed layer is stripped from the cylindrical electroformed image carrier resulting in a plating mandrel of the electroformed image and reinforcement layer. A second electroform is then made by electrodeposition of a metal on the first imaged electroform which is on the interior of the plating mandrel. The second imaged electroform is removed from the plating composite and can be used to emboss webs of material in continuous manner.
In U.S. Pat. No. 5,327,825, noted above, there is disclosed a method for producing a die which carries a pattern, image or design to be embossed on a decorative medium, such that the image, pattern or design on the decorative medium includes no production seams. More specifically, a layer of silver embossable material is plated onto a cylinder surface. The silver is then heated in preparation for receiving the pattern from a concave shaped stamping surface which has a radius matching the radius of the cylindrical surface of the cylinder. The stamp carrying the pattern to be imparted into the pure silver layer is also heated in preparation for the micro-embossing operation. Upon micro-embossing the pattern into the pure silver layer on the cylindrical surface of the die, the die or stamp carrying the pattern must be indexed at least rotationally and linearly. The cylinder is then cooled and polished. A layer of chrome can optionally be provided to reinforce the micro-embossed surface.
U.S. Pat. No. 5,662,986 discloses holographic images for security and decorative purposes. In particular, holographic images are described as being transferred to a paper tissue substrate by first laminating the holographic images on a polymeric substrate, and then transferring. The lamination of the holographic image on the polymeric substrate is described as conventional, and the polymers employed include polyethylene, polypropylene, and polyethylene terephthalate.
2. Focused-Beam Direct Writing Systems
Focused beam direct writing systems typically employ ultraviolet or blue laser in a raster scanning fashion to expose all the pixels, one at a time, on the substrate. The laser beam is focused, on the resist-coated board to the desired spot size. The focused spot is then moved across the board in one dimension with a motor driven scanning mirror. In conjunction, the stage holding the board is translated in the orthogonal dimension with a high speed stepping motor. Simultaneously, the laser beam is modulated to be either directed to the desired location on the board or deflected away. Thus, by driving the modulator and the two motors with appropriately processed pattern data, the entire board can be directly patterned. Of the many focused-beam direct write systems currently available, the offered resolution varies from 0.5-1.0 mil for printed circuit board patterning to tinder a micron for systems designed for mask making applications for IC lithography.
In U.S. Pat. No. 4,924,257 there is disclosed a method for providing a scan and repeat lithography system for high resolution, large-field, high-speed lithography. More specifically, a lithography method is disclosed which contains a scan and repeat system characterized by complimentary edge illumination by adjacent scans for producing precise images of a high resolution pattern from a mask onto a substrate at high speed and over an image field said to be substantially larger than the maximum field size of the imaging optics. The specific illumination comprises X-ray illumination.
In U.S. Pat. No. 5,291,240 there is disclosed a projection imaging system which can pattern very large microelectronic boards, display panels or semiconductor wafers at high production speeds and with high resolution. Light from a laser or lamp source is modified to provide an equal intensity illumination beam of specific shape across which the substrate is moved in a scan-and-repeat fashion to achieve uniform, seamless exposure over the entire substrate surface. Adjacent scans are made to p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Seamless holographic transfer using laser generated optical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Seamless holographic transfer using laser generated optical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seamless holographic transfer using laser generated optical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548671

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.