Electrical connectors – With provision to restrict environment effects – Including contact cover or case
Reexamination Certificate
1999-06-30
2001-05-01
Sircus, Brian (Department: 2839)
Electrical connectors
With provision to restrict environment effects
Including contact cover or case
C439S936000
Reexamination Certificate
active
06224419
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of electrical connectors, especially for telephone and data communication equipment, and, more particularly, to environmentally protected modular electrical connectors.
BACKGROUND OF THE INVENTION
Telephone line connections at subscriber locations are commonly made with the RJ-type of plug and socket connector such as an RJ-11 or RJ-45. These connectors are exemplary of electrical connections susceptible to failure from oxidation, corrosion, humidity, salt, and the like, especially in the presence of a live voltage on the conductors within the connector.
For example, it is sometimes difficult to establish and maintain an adequate environmental seal in a removable male RJ-type plug, particularly when wires lead from the male RJ-type plug. Accordingly, moisture and other environmental contaminants are allowed to enter such plugs, sometimes resulting in corrosion and/or failure of the connection of the tip and ring connections in the socket/plug combination. RJ-type sockets are likewise subject to moisture contamination and corrosion, as well as being subject to dust buildup. In hot, humid environments, such as in Florida and along the Gulf Coast of Texas, failure can occur within several months of installation. Servicing these failures is costly for the consumer or the telephone company.
Problems may also arise in connection with test ports for customer telecommunications equipment such as remote terminals at customer facilities and the like. It is often desirable to provide an RJ-type connector of the type well known to those of skill in the art, or other such connector, at an external location at a subscriber facility, such as a junction box leading to a house, or a remote terminal of the type described above. Access may be provided by installing a female RJ-type socket which is normally connected to a male RJ-type plug. The tip and ring wires (among other wires in some cases) lead from the female RJ-type socket, and connect to tip and ring connections in the male RJ-type plug, thereafter leading into the subscriber facility. When it is desired to connect test equipment to the RJ-type female socket, the plug may be removed, and another male RJ-type may be inserted into the female socket, thereby providing tip and ring connections for the test equipment. Even though the equipment may be contained in a protective housing, such arrangements are sometimes subject to much of the same moisture/corrosion degradation.
A similar problem may be experienced where RJ-type connectors are employed to connect networked computer stations for data communication. Commonly, such RJ-type connectors are used in components such as servers situated in closets. The temperatures and humidities present in the closets may vary widely and tend to degrade the connections or short circuit adjacent contacts.
Applicant has designed plug and socket type sealant-filled electrical connectors to overcome or reduce the above-described problems. See, e.g., the disclosures of U.S. Pat. Nos. 5,562,491 and 5,601,460, each to Shimirak et al.
One problem experienced with plug and socket type sealant-filled electrical connectors, including gel-filled connectors, is a tendency for the sealant material to be removed with the plug when the plug is inserted into the socket and removed. In order to improve the adhesion of the sealant to the socket as compared to the adhesion to the plug, cleaners or primer coats have been applied to the sealant contacting surfaces of the socket. However, these techniques frequently do not provide the degree of adhesion desired.
There is a need for an improved design and method for installing an environmental sealant. For example, it is often desirable to provide an environmental sealant, including a gel sealant, in connectors not originally designed to employ a sealant. It has been found that such connectors may not allow for efficient and cost-effective installation of sealant.
SUMMARY OF THE INVENTION
The present invention is generally directed to improved environmentally protected electrical connectors of the type having a socket adapted to receive a plug, and methods for forming and using the same. The inventive aspects of the present invention may be applied to RJ-type sockets, for example.
According to one aspect of the present invention, a sealant-filled connector assembly for use with a connector plug includes a socket. The socket includes a first portion, a second portion adjacent the first portion, and a plug cavity formed in the first portion and adapted to receive the plug. An electrically conductive lead has a first contact disposed in the plug cavity and a second contact positioned on the second portion. A partition wall is positioned between the plug cavity and the second portion. A connecting passageway is formed in the partition wall. The passageway provides fluid communication between the plug cavity and the second portion. An environmental sealant is disposed in the socket. The sealant is disposed in and extends continuously through the plug cavity and the passageway and into the second portion.
According to a further aspect of the present invention, a sealant-filled connector assembly for use with a connector plug includes a socket having a plug cavity formed therein adapted to receive the plug. An electrically conductive lead has a first contact disposed in the plug cavity, a second contact positioned at an opposing end of the lead, and a connecting portion extending between and joining the first and second contacts. A reservoir is located in the socket adjacent the connecting portion of the lead. An environmental sealant is disposed in the reservoir and engages at least a portion of the connecting portion.
According to a further aspect of the present invention, a sealant-filled connector assembly for use with a device connector having exposed wire ends includes a socket adapted to receive the device connector and including a trough located in the socket. The trough is positioned and configured such that, when the device connector is mounted on the socket, the wire ends of the device connector are received in the trough. An environmental sealant is disposed in the trough whereby, when the device connector is mounted on the socket, the sealant surrounds the wire ends. The socket may further include a plug cavity adapted to receive a plug, and an electrically conductive lead having a first contact disposed in the plug cavity and a second contact positioned on an opposing end of the lead.
According to a further aspect of the present invention, a connector assembly for use with a connector plug and an environmental sealant includes a socket having a plug cavity formed therein. The plug cavity is adapted to receive the plug and has an interior wall. The interior wall is textured to enhance adhesion between the sealant and the socket. An environmental sealant may be disposed in the plug cavity such that it engages the interior wall. The interior wall may have a rough surface having a rating of at least N12 per ISO 1320:1922. A raised, inwardly projecting pattern may be provided on the interior wall. The raised pattern may include a plurality of ribs.
According to a further aspect of the present invention, a connector assembly for use with a connector plug and an environmental sealant includes a socket including a plug cavity formed therein adapted to receive the plug. The plug cavity has an interior wall. An engagement member is mounted on the interior wall. The engagement member is formed of a material providing enhanced adhesion with the sealant as compared to the material of the interior wall. An environmental sealant may be disposed in the plug cavity and engage the interior wall. The engagement member may be molded. The engagement member further may be formed of an elastomeric material.
According to yet another aspect of the present invention, a method of forming a sealant-filled connector assembly for use with a connector plug includes providing a socket including a first portion, a second portion, a plug
King David Michael
Stallings Michael Ryan
Tucker Stephen Craig
Myers Bigel & Sibley & Sajovec
Nasri Javaid
Sircus Brian
LandOfFree
Sealant-filled electrical connector and method for forming... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sealant-filled electrical connector and method for forming..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sealant-filled electrical connector and method for forming... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2490970