Sealable stagnation flow geometries for the uniform...

Coating processes – Spray coating utilizing flame or plasma heat

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S450000, C427S249800, C427S255280

Reexamination Certificate

active

06242049

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to the deposition of heat or materials onto a substrate and, more particularly, to the use of constrained stagnation flow geometry, including axisymmetric flow, to achieve efficient uniform deposition.
It is well known to those skilled in the art that certain flow configurations have important similarity properties that render their analysis one-dimensional. Included in this set is stagnation flow. Given that a uniform velocity, uniform temperature and uniform composition inlet flow issues from a manifold a fixed distance above a parallel fixed solid surface which is at uniform temperature, it can be shown that the heat and mass flux to the solid surface will be everywhere uniform regardless of the radial extent of the system. In addition, the gas phase species and temperature profiles are independent of radius. The inherent radial uniformity of a stagnation flow geometry provides an important means for achieving uniform species and heat fluxes to large surface areas. This technology offers a means to uniformly clean and etch surfaces and has application to materials synthesis, such as chemical vapor deposition for the fabrication of semiconductors and flame synthesis of diamond films all of which require very highly uniform film growth over relatively large areas so that many identical devices can be cut from a single large wafer.
Various methods for introducing and distributing reactant gases as well as use of specialized geometries, such as rotating-disk and fixed-pedestal reactors, have been designed to try to achieve the desired deposition uniformity. The need for both a method of vapor deposition in which the growth rate of the deposited material onto a substrate is highly uniform over the entire area of the substrate and in which the growth rate of the deposited material can be increased as well as the use of stagnation flow as a means for improving chemical vapor deposition of materials and a method for providing uniform gas flow has been disclosed by deBoer, et al. in U.S. Pat. No. 4,798,165. In this instance, the gas carrying deposition materials is constrained to have an axial symmetry by introducing it into the depostion chamber by means of a multiplicity of apertures. In U.S. Pat. No. 5,215,788 Murayama, et al., disclosed that a very uniform deposit could be produced at a growth rate of 60 microns/hr in the chemical vapor depostion synthesis of diamond by the use of a highly strained premixed flat flame stabilized in the stagnation flow regime. While the outermost gas flow is crucial to maintaining the ideal streamlines necessary for stagnation flow, this gas flow does not contribute to development of the deposit. As described above, stagnation flow offers numerous advantages insofar as a means for improving uniformity of distribution of reactants over large area substrates, however, in order for this technique to become practical the inefficiencies in the use of reactants must be overcome.
In addition to the fields of cleaning and etching of surfaces, chemical vapor deposition and material synthesis with flames, the use of strained stagnation flow provides a new route to combustion devices that are energy efficient, in the sense that they are effective in coupling flame generated heat to surrounding surfaces and working media, and offer a means of minimizing emissions by controlling the gas phase combustion process.
In order to achieve energy efficiency in combustion applications effective exchange of heat between the flame gases and the working medium is important, especially for natural gas flames where heat extraction is heavily dependent upon convective heat transfer rather than direct radiation. Because gas inlet velocities can be very high, stagnation flames offer a very effective route to increased heat transfer and, consequently, greater energy efficiency. Fukushima, et al. have used the stagnation flame approach in a steel making application achieving a surface heat flux of approximately 200 kW/m
2
, almost five times greater than that provided by electric powered radiant tubes.
Because strained stagnation flow permits high gas inlet velocities the flame can be driven very near a heat transfer surface. Since gas velocities can be high, residence times will be correspondingly low and, as a consequence, emissions of NO
x
from stagnation flames are low. In addition, as discussed above, surface heat transfer rates can be very high and, consequently, maximum flame temperatures can be reduced, further reducing NO
x
emissions. However, as is the case with other applications of stagnation flow, vide supra, gas flow that enters the system beyond a critical radius does not contribute to the combustion process and is, in that sense, wasted.
It is obvious to those skilled in the art, that stagnation flow systems offer both significant advantages in combustion and materials processing and synthesis applications. The only remaining impediment to widespread use of stagnation flow systems is the need to make more efficient use of reactants. Maintaining the desirable properties of stagnation flow coupled with a practical solution to the problem of a more efficient stagnation flow system forms the basis of the invention disclosed herein.
SUMMARY OF THE INVENTION
As indicated above, applications that employ a stagnation flow regime provide numerous advantages such as gas phase species and temperature profiles that are independent of radius, uniform heat and mass fluxes and systems that are amenable to process control, however, there are certain inefficiencies which are inherent in this operating regime, namely, large quantities of fuel or reagent, which although they serve a critical function by supporting the similarity behavior of the rest of the flow field, do not enter the reaction zone and are thus wasted.
Accordingly, it is an object of the present invention to provide method and apparatus to maintain the desirable features inherent in an ideal stagnation flow regime, as described herein, vide supra, while improving the efficiency of these systems insofar as, for example, minimizing the use of gaseous reactants. It is a further object of this invention to provide method and apparatus to maintain the composition of reactants over the surface of the substrate essentially constant in order to maximize the area for uniform deposition of heat or materials. It is yet a further object of this invention to provide a configuration which is inherently scaleable. Still yet another object of this invention is to tailor the composition of the gas flow to meet different needs.
The aforementioned and other objects are accomplished in the present invention by means of specially designed gas or reactant delivery systems or burners which provide for the uniform deposition of materials or heat, are inherently scalable, can be applied to a variety of operating conditions and whose designs are based on calculations of the streamlines of ideal stagnation flow.
These and other objects of the present invention together with the advantages thereof over existing prior art forms which will become apparent to those skilled in the art from detailed disclosure of the present invention as set forth hereinbelow, are accomplished by the improvements herein described and claimed.


REFERENCES:
patent: 4798165 (1989-01-01), de Boer et al.
patent: 4989541 (1991-02-01), Mikoshiba et al.
patent: 5209812 (1993-05-01), Wu et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sealable stagnation flow geometries for the uniform... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sealable stagnation flow geometries for the uniform..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sealable stagnation flow geometries for the uniform... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2455939

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.