Gas separation – With means securing or retaining separating media – Unit or cohesive sheet-like media in flow line or frame
Reexamination Certificate
2001-09-17
2003-11-25
Smith, Duane (Department: 1724)
Gas separation
With means securing or retaining separating media
Unit or cohesive sheet-like media in flow line or frame
C055S495000, C055S501000, C055S510000, C055S523000, C055SDIG005, C210S450000, C210S493200, C210S496000, C210S510100, C219S085120, C219S085130
Reexamination Certificate
active
06652615
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the filtering of a fluid and more particularly to an improved seal for sealing a filter element to a filter mounting and the method of making the seal. This invention also relates to an improved frangible seal for sealing a filter element to a filter mounting and the method of making the frangible seal.
2. Background of the Invention
Various apparatuses and methods have been utilized by the prior art for removing suspended contaminants from a contaminated fluid. In general, the contaminated fluid is passed through a porous filtering media by an external pressure or an external force. The pore size of the porous filtering media is selected to permit the passage of the fluid therethrough while inhibiting the flow of contaminants through the porous filtering media. The contaminants are blocked by the porous filter media while the fluid passes through the porous filter media. The fluid flowing through the filter media is purged of the contaminants.
After a period of time, the contaminants collected by the filter media overlay the pores of the porous filter media thereby blocking the pores and reducing the passage of the fluid therethrough. The blockage of the pores of the filter media by the collected contaminants reduce the flow rate of the fluid through the fluid filter thereby rendering the fluid filter unsuitable for continued used. In many cases, the fluid filter was discarded and replaced with a new fluid filter to reestablish the desired flow rate of the fluid in the fluid filtering process.
In a typical fluid filter, a porous filter media is secured to a filter support or the like for mounting or suspending the filter media. In the case of a cylindrical filter, the filter media is formed into a cylindrical configuration and a first and a second cylindrical end of the filter media is bonded to a first and a second filter mounting member such as a first and a second end cap. The first and second end caps mount the filter media relative to a fluid input source and a fluid output source.
In many cases, a welding process was used for affixing the first and second cylindrical ends of the filter media to the first and second end caps. The welding process was accomplished by first placing the filter media on a supporting core. The first and second cylindrical ends of the filter media were swaged to compact the filter media onto an underlying supporting core. A first and a second welding ring were welded to the compacted first and second ends of the filter media. Finally, the first and second end caps were welded to the first and second welding rings. The compacting and welding of the first and second cylindrical ends of the filter media essentially destroyed all filtering capability of the filter media near the compacted ends of the filter media.
Others in the prior art have devised devices and methods for creating a bond between the filter media and the filter support. These other devices and methods have used means other than welding to affix a filter media and the filter support.
U.S. Pat. No. 2,642,187 to Bell discloses a replaceable filter unit of the character described comprising a pleated filter body of resin-impregnated paper arranged in tubular form and with the pleats extending substantially radially, end discs of the same material as the filter body closing off opposite ends of the body, said discs being bonded by a thermosetting resin adhesive to opposite end edges of said pleats, said adhesive lying between under faces of said discs and corresponding end edges of said pleats in contact therewith, and having turned down rims bonded adhesively by thermosetting resin adhesive to folds of the pleats, said adhesive lying between inner faces of the turned down rims and the folds of the pleats in contact therewith.
U.S. Pat. No. 2,877,903 to Veres discloses a unit for filtering particulate matter from a fluid flowing therethrough, a hollow filter body comprising a screen equipped with a screen closure at one end thereof, a cap substantially closing the other end of said screen body and defining connecting means for communicating the interior of said filter body with a fluid flow line, and a mass of pellets defining a substantially continuous coating along the outer surface of the screen end closure and screen body and being bonded to each other and to the screen body and end closure to form an integrated structure therewith, whereby both said screen body and screen end closure define filtering areas through which fluid may pass to the interior of the screen body.
U.S. Pat. No. 2,957,235 to Steinberg discloses a method of assembling first and second elements composed of a mixture of powdered metal and resinous binder comprising placing said first element on a support, heating said first element until said resin binder therein becomes pliable without the element losing shape, placing said second element against said first element, applying pressure to said second element until a bond is formed by the resinous binder between said first and second elements, removing the elements from said support, cooling the assembly of said elements, supporting said assembly with sinter material in a sintering zone, and sintering said assembly into a unitary sintered structure.
U.S. Pat. No. 3,379,000 to Webber et al discloses a tow of metal filaments each having a maximum cross-section of less than approximately 10 microns and a length of approximately 50 feet and having a trace amount of a different material diffused in the outer surface thereof.
U.S. Pat. No. 3,490,902 to Fisher discloses a method for forming porous structures useful, for example, as filters, diffusion membranes, sound absorbers, and the like. The structures contain a sintered metal portion at least one surface of which having embedded and bonded thereto a reinforcing member. Some of the fibers in the fiber metal portion are bonded to each other and to the reinforcing member.
U.S. Pat. No. 3,505,038 to Luksch et al. discloses a mass comprising a plurality of randomly disposed hair-like substantially solid metal fibers, wherein said fibers are substantially free from particles of degradation and air transportable, and wherein said mass has resilient loft, substantial uniformity of density and distribution of voids, handlable green strength, and a density range of from one percent to eighty-five percent.
U.S. Pat. No. 3,716,347 to Bergstrom et al. discloses metal parts joined together with sintered powdered metal by applying a mixture of powdered metal and an organic heat-fugitive binder to the parts at the locus of the joint to be formed therebetween, assembling the parts in their desired joined configuration, and heating the assembly to volatilize or burn-off the binder and sinter the powdered metal.
U.S. Pat. No. 4,114,794 to Storms discloses an autogenous or sinter bond between metallic filter media and other metal components of a filter assembly is produced by joining the parts through a diffusion bonding membrane. The membrane comprises a web of small diameter metal fibrils which will sinter bond to both the filter media and the other filter parts to form a physically strong and leak-free seal.
U.S. Pat. No. 4,169,059 to Storms discloses an autogenous or sinter bond between metallic filter media and other metal components of a filter assembly is produced by joining the parts through a diffusion bonding membrane. The membrane comprises a web of small diameter metal fibrils which will sinter bond to both the filter media and the other filter parts to form a physically strong and leak-free seal.
U.S. Pat. No. 4,290,889 to Erickson discloses a new and unique means for preventing the crowns of a backflushable filter element unit from splitting which has heretofore been caused by the cyclic action of the cleaning and backflushing. A layer of staple material is positioned adjacent the outer layer of filter media to prevent bellowing or ballooning. An additional staple layer may be positioned adjacent the inner layer of filtered media to provide a
Malanga Robert
Quick Nathaniel R.
Smolowitz Matthew M.
Greene Jason M.
Knobbe Martens Olson & Bear LLP
Pall Corporation
Smith Duane
LandOfFree
Seal for filter element does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Seal for filter element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seal for filter element will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3122013