Seal for an electrical connector, method for manufacturing a...

Electrical connectors – Coupling part including flexing insulation – Sealing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S936000

Reexamination Certificate

active

06500027

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a seal for an electrical connector, which seal has at least one opening for the introduction of an electrical contact that is connected to a conductor. Furthermore, the invention relates to a method for manufacturing a seal and a use of this seal in an electrical connector.
2. Summary of Prior Art
For electrical connectors with electrical contacts it is often necessary to seal the contact-making area of the connectors with respect to the housing. Basically two different methods are specified for this. It is possible to seal each individual contact, or each individual conductor, with respect to the connector housing, or a family seal can be used. The application of a family seal has considerable advantages particularly if the connector has a very large number of contacts which are packed very tightly.
A disadvantage of family seals is that they can easily be damaged. Family seals are firstly introduced into the connector housing and are then penetrated by the individual contacts when the contacts are introduced into the connector housing. If the contacts do not have a very smooth surface without corners and edges, the problem arises of either the seal being cut into or even material from the seal being carried out when the contact is introduced through the seal into the connector housing. If it is necessary to replace a contact, and the latter is repeatedly moved through a seal in different directions, this can lead to substantial damage of the family seal and also to the contamination of the contact surface of the contacts with particles of the seal.
U.S. Pat. No. 4,875,870 discloses an electrical connector in which a layer of gel is used as family seal. The connector housing is of two-part design here and has a first part in which a layer of gel and the chambers for the contacts are located, and a second part which can assume two different positions in relation to the first part. In a second position, the second part presses onto the gel like a cap and, by this compression, causes the gel to have a sealing effect.
GB 2 101 420-A discloses an underwater electrical connector having contacts disposed in a grease chamber sealed with a resilient diaphragm. A rigid plate member having openings according to the contacts is mounted adjacent the diaphragm. The plate member protects the diaphragm against damage.
SUMMARY OF THE INVENTION
An object of the invention is to specify a seal for an electrical connector, that can be used as a family seal and leads to a good sealing effect. Furthermore, an object of the invention is to specify a method for manufacturing such a seal, and a use of such a seal.
The object is achieved with respect to the seal by means of a seal which has at least one opening or the introduction of an electrical contact that is connected to a conductor, the seal being formed by an insulating foam whose cells are filled with a grease.
With regard to the method for manufacturing a seal, the object is achieved by means of a method with the following method steps: the material for the foam and the grease are mixed, the mixture is then introduced in a mould, the mould is closed with a cover and then the expansion and the curing of the foam take place.
A further solution is specified by means of a method in which a mat in the form of a plate having openings and made of an open-cell foam is impregnated with a grease and then provided with a closed surface.
Furthermore, a use of such a seal is specified in an electrical connector which comprises a housing with at least one chamber for the electrical contact, and has a pressure plate with at least one through hole, the seal being provided between the housing and pressure plate.
Advantageous developments are specified for each main claim in the subclaims.
A seal according to the invention has at least one opening for the introduction of an electrical contact, connected to a conductor, into an electrical connector, that is to say actually an opening for leading through an electrical contact; the seal comprises an insulating foam whose cells are filled with a grease. This foam can be an open-cell or closed-cell foam which has a closed surface at its outer walls. In the case of an open-cell foam, this surface can be formed by a film. In the case of a closed-cell foam, a closed surface is already available. In addition, the foam can have in the region of the surface, at least in the region of the top and bottom surface and advantageously also around the openings, a layer in which the cells are very small. The cells are substantially smaller in this layer in comparison with the rest of the foam.
The described structure proves particularly advantageous if the seal is damaged when the opening is penetrated by an electrical contact. As a result, the outer surface of the seal is cut into and the cells of the foam are correspondingly cut into. These cells are however filled with the grease. Since the seal is used in an electrical connector which has a pressure plate which correspondingly exerts a pressure on the seal, the grease will, as a result of this pressure, flow out of the cells which have been cut into and will have a sealing effect at the damaged points of the actual seal. The grease also acts as a lubricant and reduces the insertion forces.
If the contacts used are configured in such a way that the seal is not damaged, then no grease will leave the seal if it has a closed surface.
The term grease is to be understood for example as a mineral or synthetic oil which contains a thickening agent. It is particularly advantageous to use a silicone-based compound as grease. The use of a synthetic hydrocarbon grease is also possible. The cone penetration of the grease should be between 150 and 500{fraction (1/10)} mm (measured after DIN 51580).
For the characterization of the term foam: it will be a mixture of the polymer material with a gas. In this context, the gas produces cells or pores whose diameter is between 0.1 mm and 1 mm. The term foam does not necessarily mean that it is manufactured by “expansion”.
The insulating foam is for example a material with the following properties in the expanded state: tensile strength 0.03 MPa-0.9 MPa, elongation 40%-100%.
It is particularly advantageous to use, for example, a two-component silicone foam as closed-cell foam and a polyurethane foam as open-cell foam.
By using these materials, it is possible to manufacture a hybrid foam/grease system which has the properties necessary for the seal.
Owing to the particular features of the seal, it is suitable in particular for use as a family seal.
The seal can be manufactured in a plurality of ways. A first possibility is to proceed as follows: firstly, the material for the foam and the grease are mixed together. The mixture is then introduced into a mould which is closed with a cover. Then, the mixture is expanded and the foam is cured.
It is particularly advantageous that the mould already has pins by means of which the openings of the seal are manufactured. The openings are therefore not manufactured by the introduction of the contacts.
A particular advantage is also obtained if the mixture is introduced into a housing of an electrical connector in whose chambers there are pins which appropriately project into the opening into which the mixture is introduced. Then, a cover is fitted onto the housing, which cover is in contact with the pins so that a seal with openings is produced. Instead of the introduction into the housing, introduction of the mixture into a depression in the pressure plate is also possible, the through holes in the pressure plate being closed by pins.
Another possibility is the introduction of the mixture in to a mould, which is closed by the pressure plate. The pressure plate includes integrated pins instead of through openings for the contacts. The pressure plate further includes holes for the mixture to expand in. The mixture is then foamed and cured. The seal is integrated into the pressure plate. The pressure plate is cut so that pins are cu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Seal for an electrical connector, method for manufacturing a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Seal for an electrical connector, method for manufacturing a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seal for an electrical connector, method for manufacturing a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970087

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.