Seal

Seal for a joint or juncture – Seal between relatively movable parts – Piston ring or piston ring expander or seat therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C277S566000, C277S568000

Reexamination Certificate

active

06179297

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to gas and oil seals that are particularly adapted for use in gas springs and in other high pressure hydraulic and pneumatic sealing applications, which include an annularly spaced, relatively movable piston rod and cylinder and which contain relatively high pressure gas and lubricating oil (hereinafter collectively referred to as “gas springs”). The improved seal of the present invention advantageously minimizes the leakage of relatively high pressure gas and lubricating oil between an annularly spaced, axially relatively movable cylinder and piston rod, and more particularly, from the rod end of the cylinder.
The basic structure and theory of operation of gas springs has long been known. Gas springs include a piston and a cylinder, both having a relatively small diameter, usually under two inches. The piston is designed to move relatively within and with respect to the cylinder and is connected with one end of a piston rod that extends out of the normally sealed, rod end of the cylinder. The other end of the piston rod is usually connected with a device upon which the gas spring exerts force when the spring is actuated. The other, closed end of the cylinder is charged with a relatively high pressured gas, generally nitrogen, and usually at a pressure usually between 500-3,000 psi. Lubricating oil is normally also introduced into the closed end of the cylinder at the time of the gas spring's manufacture.
To be commercially acceptable, it has long been recognized by those in the gas spring art that a gas spring must include a seal that minimizes the leakage of the high pressure gas—and in most instances, the lubricating oil—from the rod end of the cylinder. This gas spring seal must effectively seal around the piston rod as well as between the piston rod and the cylinder, or more specifically, the inner cylinder wall.
For this purpose, previously available gas springs generally used so-called “lip” seals or so-called “quad” seals before our invention. Examples of such quad seals are disclosed in U.S. Pat. Nos. 3,550,990 and 4,693,343. Such quad seals are normally employed in combination with a metal bushing member and a plastic, usually polytetrafluroethane (“PTFE”), washer. The washer is used to prevent the extrusion or “nibbling” of the seal as disclosed in the latter patent.
Over the past decade or so, gas springs have been increasingly used in automotive vehicles in lieu of mechanical springs. For example, gas springs are now commonly used to hold open trunk hoods, deck lids, hatch doors (in hatch back type vehicles) and the rear doors or gates or minivans and sport utility vehicles.
The design and manufacture of gas springs for automotive usages pose unique and special problems for gas springs manufacturers, particularly in view of the large numbers of gas springs that must be manufactured to exacting specifications by mass production techniques and machinery. Additionally, and increasingly within the past several years, enormous pressures have been exerted by automotive manufacturers to have gas spring manufacturers reduce their manufacturing costs while, at the same time, enhance the quality and extend the effective life of their gas springs.
One of the problems confronting gas spring manufacturers is the range of environmental conditions under which the gas springs are used and their sometimes irregular usage. For instance, gas springs are expected to function satisfactorily in the heat of summer and in the cold of winter even when, for example, a trunk hood may be opened by an elderly person who only infrequently uses his or her vehicle.
Another problem long facing gas spring manufacturers is the reduction of the high static frictional (“stiction”) or break-a-way force, that is, the force required to “unstick” the seal when the initial relative movement between the cylinder and the piston rod occurs. This problem is significant in gas springs and hydraulic/pneumatic suspension applications where it is important to minimize high initializing force spikes and resulting seal instability due to long delays between spring activation cycles. Such delays are especially common in gas springs employed in automotive vehicles.
Further, dynamic friction may contribute to accelerated seal failures during high frequency low amplitude cycling (typically 3 mm×20 Hz). This is associated with “gate dance” which occurs when the vehicle encounters irregular road surface conditions.
To enable gas springs to function as intended in an automotive environment, the gas pressure of the spring (that is, the output force exerted by the spring) must be maintained substantially constant throughout the anticipated life of the gas spring. It is imperative then that leakage of gas from the gas spring cylinder be minimized, both when the gas spring is being used (that is, when the gas spring is in a dynamic state or mode) and when the gas spring is not being used (that is, when it is static). No one is “happy” when a trunk lid fails to remain in an open position even if the vehicle is over five years old.
Leakage of the lubricating oil from the gas springs cylinders has also been becoming an increasingly serious problem as gas springs are more often used in passenger occupying parts of vehicles, such as vans and hatch backs. No one likes to find oil “spots” in their vehicles, particularly when the spots are where children or pets are likely to be. Acceptable gas spring seals must now minimize both dynamic and static oil losses.
Only a decade or so ago, the standards for gas springs, set by automotive manufacturers, were losses of less than a 5% output force/gas charge and 3.0 cc. oil per 10,000 cycles. Losses of less than a 5% output force/gas charge and 0.3 cc. oil per 50,000 cycles are now the targeted standards. Automotive manufacturer would like in the future to extend the standards to 100,000 cycles as the life expectancy of automotive vehicles and their components is extended. Additionally, a ten year effective life—as opposite to the heretofore normal five year effective life—for gas springs has been set as a goal by the automotive manufacturers. In the past, the permeation of gas through and around the gas spring seals has tended to limit the effective lives of gas springs. More particularly, it is known that gas molecules will, over time, permeate axially through a seal body in a gas spring so as to reduce the effective life of the gas spring even the seal's design otherwise minimizes gas leakage around the seal.
Those skilled in the gas spring art have recognized that currently available gas spring seals, and even the better performing quad seals, have inherent weakness or limitations. For instance, the current, commercially available quad seals remain prone to relatively high static and dynamic oil losses and has high “stiction” or static break-away forces.
It has been a longstanding goal in this art to overcome the above described problems and weaknesses, to extend the effective life for gas spring seals, and to reduce significantly the cost of manufacturing gas springs even further.
BRIEF SUMMARY OF THE INVENTION
The improved gas spring seal of the present invention employs a unique, materially hybrid, non-symmetrical energized seal body and “wiper” design that controls the distinct sealing requirements of high pressure gas and oil in a novel manner and that minimizes the dynamic and static leakage of the gas and oil out of the gas spring cylinder to a much greater extent than commercially available quad seals. More specifically, the improved seal of the present invention performs beyond the currently targeted standards of losses of less than 5% output force/gas charge and 0.3 cc oil per 50,000 cycles. Moreover, tests indicate that the improved seal advantageously reduces losses to less than 3.0% output force/gas charge per 100,000 cycles (where a 30.0% loss would be typical of current seals) and to less than 0.1 cc oil per 100,000 cycles (where a 10.0 cc loss per 100,000 cycles would be typical of current seals).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Seal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Seal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2480797

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.