Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof
Reexamination Certificate
2000-03-30
2002-03-12
Hampton-Hightower, P. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From carboxylic acid or derivative thereof
C528S335000, C528S336000, C528S339000, C528S339300, C528S339500, C528S338000, C528S340000, C427S197000, C427S202000, C427S203000, C106S031130, C106S031290
Reexamination Certificate
active
06355770
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to polyamide resins prepared from dimeric fatty acids. More specifically, the present invention relates to compositions comprising such polyamide resins along with other additives, which are useful as thermographic powders.
Polyamide resins derived from polymeric fat acids have been known for a long period of time and have been developed commercially. Certain resins based on such polyamides have been developed for many uses including, for example, hot melt adhesives, coatings, films and inks, particularly in flexographic and thermographic printing.
Thermographic printing, i.e., raised printing, is a well known process typically involving the layering of ink onto a paper and coating the paper with a thermographic powder containing a polyamide resin which adheres to the ink. The coated paper is heated and the powder melts, fusing with the ink. The resulting print exhibits a raised image having a smooth, glossy surface.
Unfortunately, many of the polyamide resins which have been developed for use in thermographic printing exhibit some undesirable properties which can limit their commercial use. For example, polyamide resins can develop a dull haze over time which is known in the art as “bloom” or “blush”. Additionally, polyamide resins can be easily scuffed and/or scratched. Such properties are considered disadvantages in the thermographic printing arts and limit the applications of such polyamide resins to small printing areas such as business cards and stationery. The use of such polyamide resins in large print areas, such as packaging and greeting cards, is generally excluded due in part to the ease with which such surfaces may be scuffed or scratched.
Thus, there is a need in the art for a polyamide resin which can be used as a thermographic powder in a wide variety of applications and printing areas, and which is resistant to bloom, scratching and scuffing.
BRIEF SUMMARY OF THE INVENTION
The present invention includes a polyamide resin composition which is suitable for use as a thermographic printing powder and which is significantly improved in bloom resistance and scratch/scuff resistance, as compared to prior art thermographic polyamide resin powders.
Thus, the present invention includes compositions including a major amount of a polyamide resin and a minor amount of wax. When compared to certain existing polyamide resins, it was surprisingly found that coatings made from these types of compositions are substantially resistant to blooming, scratching and scuffing over long periods of time while maintaining other desirable properties. Accordingly, the compositions are not only useful, e.g., in the small printing areas such as business cards and stationery, but also are useful in the large printing areas such as book covers, greeting cards and packaging boxes.
The present invention includes a composition comprising: (a) from about 51% to about 99.9% by weight of a polyamide resin component; and (b) from about 0.1% to about 49% by weight of a wax component, wherein the polyamide resin component comprises a reaction product obtained by reaction of a dimerized fatty acid reactant, a carboxylic acid reactant and a diamine reactant.
A particularly preferred embodiment of the present invention includes a composition comprising: (a) from about 90% to about 99.9% by weight of a polyamide resin component; and (b) from about 0.1% to about 10% by weight of a wax component comprising a member selected from the group consisting of polyethylene waxes, polytetrafluoroethylene waxes, and mixed polyethylene/polytetrafluoroethylene waxes, wherein the polyamide resin component comprises a reaction product obtained by reaction of: (1) a tall oil fatty acid dimerization product having a dimer content of about 97%, a monomeric content of about 1%, and a trimeric content of about 2%, with (2) a mixture of a monocarboxylic acid having from about 16 to about 20 carbon atoms and azelaic acid, and (3) ethylenediamine; wherein the dimerization product is at least partially hydrogenated, and wherein a ratio of acid equivalents to amine equivalents in said reaction is greater than or equal to about 1.04.
Additionally, the present invention includes a method of enhancing scratch and/or scuff resistance and reducing bloom in a thermographic ink, said method comprising: (a) providing a substrate having a thermographic ink composition disposed thereon; (b) coating the thermographic ink composition with a polyamide resin composition comprising: (a) from about 51% to about 99.9% by weight of a polyamide resin component; and (b) from about 0.1% to about 49% by weight of a wax component, wherein the polyamide resin component comprises a reaction product obtained by reaction of a dimerized fatty acid reactant, a carboxylic acid reactant and a diamine reactant; and (c) heating the substrate for an amount of time and at a temperature sufficient to melt the thermographic ink composition and the polyamide resin composition.
DETAILED DESCRIPTION OF THE INVENTION
The invention is directed to a composition including a major amount by weight of a polyamide resin and a minor amount by weight of a wax. The polyamide resin component is preferably present in an amount of from about 80% to about 99.9% by weight, more preferably from about 90% to about 99.5% by weight, and most preferably from about 95% to about 99.5% by weight, based upon the weight of the composition.
The polyamide resin component can be any suitable polyamide resin. Suitable polyamide resins which exhibit sufficient non-bloom characteristics generally have an acid value (AV) and an amine value (AmV) such that (AV) minus (AmV) is greater than or equal to about 4. Generally, the acid value of a non-bloom resin should be from about 5 to about 10 and the amine value should be less than or equal to about 2, and preferably about 1. Accordingly, the number of acid equivalents reacted with amine equivalents is generally such that the ratio of acid equivalents to amine equivalents is greater than 1, preferably greater than or equal to 1.02, more preferably greater than or equal to 1.04, and most preferably greater than or equal to 1.05.
Preferred polyamide resin components are prepared by reacting a dimerized fatty acid, a carboxylic acid and a diamine. For example, preferred polyamide resins include the reaction product derived from condensation of a dimerized hydrogenated fatty acid in an amount of from about 60 to about 68 percent by weight, stearic acid in an amount of from about 15 to about 40 percent by weight, azelaic acid in an amount of from about 0.5 to about 1.5 percent by weight and ethylene diamine in an amount of from about 6.5 to about 9.5 percent by weight of the polyamide resin. The diamine reactant may also further include a polyamine, however diamines without additional polyamines are preferred. Diamines suitable for use in accordance with the present invention are preferably linear and have from about 2 to about 6 carbon atoms. The diamine reactant can, for example, contain a mixture of ethylene diamine and hexamethylene diamine.
The carboxylic acid reactant preferably contains a mixture of a monocarboxylic acid and a dicarboxylic acid. However, monocarboxylic acid may be used alone with sufficient amounts of dimerized fatty acid. Preferred monocarboxylic acids are linear and contain from about 16 to about 20 carbon atoms. Particularly preferred monocarboxylic acids include stearic acid, isostearic acid and triple pressed stearic acid. Dicarboxylic acids that may be used in accordance with the present invention are preferably linear and contain from about 6 to about 10 carbon atoms. A particularly preferred dicarboxylic acid is azelaic acid.
Dimerized fatty acids which can be used in accordance with the present invention are preferably hydrogenated to reduce aestethically unpleasing color. The degree of hydrogenation is not critical. A preferred degree of hydrogenation corresponds to an iodine value less than or equal to 110, and more preferably less than or equal to 95. Dimerized fatty
El-Hefnawi Sobhy
Vogel Timothy C.
Cognis Corporation
Drach John E.
Ettelman Aaron R.
Hampton-Hightower P.
LandOfFree
Scuff and bloom resistant polyamide resin compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Scuff and bloom resistant polyamide resin compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scuff and bloom resistant polyamide resin compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2851913