Scroll fluid machine having an orbiting radius varying...

Rotary expansible chamber devices – Working member has planetary or planetating movement – Helical working member – e.g. – scroll

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C418S055500

Reexamination Certificate

active

06224357

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a scroll fluid machine suitable for use in an air compressor, a vacuum pump, etc. by way of example. More particularly, the present invention relates to a scroll fluid machine provided with a variable crank for varying the orbiting radius of an orbiting scroll member.
In general, a scroll fluid machine has a casing and a fixed scroll member provided in the casing and having a spiral wrap portion standing on an end plate. A driving shaft is rotatably provided in the casing. An orbiting scroll member is orbitably provided on the distal end of the driving shaft. The orbiting scroll member has a spiral wrap portion standing on an end plate. The wrap portion overlaps the wrap portion of the fixed scroll member to define a plurality of compression chambers.
These days, there is known a scroll fluid machine in which a fitting portion is provided at the distal end of the driving shaft, while a boss portion is provided on the orbiting scroll member, and an orbiting radius varying mechanism is provided between the fitting portion of the driving shaft and the boss portion of the orbiting scroll member. The orbiting radius varying mechanism is fitted to the fitting portion and the boss portion to vary the orbiting radius of the orbiting scroll member [for example, see Japanese Patent Application Unexamined Publication (KOKAI) No. 09-144674 (1997)].
In the scroll fluid machine using such an orbiting radius varying mechanism, the wrap portion of the orbiting scroll member and the wrap portion of the fixed scroll member are always in contact with each other at a plurality of points. Assuming that the two wrap portions contact each other at the inner peripheral surface of the wrap portion of the orbiting scroll member on one side of the center of orbiting motion of the orbiting scroll member along one diameter, the two wrap portions contact each other at the outer peripheral surface of the wrap portion of the orbiting scroll member on the other side of the center along the same diameter. Accordingly, when moving in one direction, the orbiting scroll member is subjected to frictional forces in the opposite direction to the direction of movement at a plurality of contact points. At this time, the frictional forces occurring on one side of the center of the orbiting scroll member and those occurring on the other side of the center act on the orbiting scroll member so as to urge it to rotate in opposite directions to each other.
The orbiting scroll member is prevented from rotating. In actuality, however, there is backlash between the orbiting scroll member and the rotation preventing mechanism. Therefore, when the tendency of the orbiting scroll member-orbiting mechanism to urge the orbiting scroll member to rotate is overcome by the tendency of the total sum of the above frictional forces to urge the orbiting scroll member to rotate in the opposite direction, the orbiting scroll member rotates slightly in the opposite direction. Accordingly, the structure of the prior art causes vibration and noise unfavorably.
In view of the above-described problems with the prior art, an object of the present invention is to provide a scroll fluid machine in which the orbiting scroll member is constantly urged in a direction in which rotational torque acts and so it is allowed to orbit smoothly.
BRIEF SUMMARY OF THE INVENTION
The present invention is applicable to a scroll fluid machine including a casing and a fixed scroll member provided in the casing. The fixed scroll member has a spiral wrap portion standing on an end plate. A driving shaft is rotatably provided in the casing. The driving shaft has a fitting portion at the distal end thereof. An orbiting scroll member is orbitably provided on the distal end of the driving shaft. The orbiting scroll member has a spiral wrap portion standing on the front side of an end plate. The wrap portion overlaps the wrap portion of the fixed scroll member to define a plurality of compression chambers. The orbiting scroll member further has a boss portion provided on the rear side of the end plate. A variable crank is fitted to the fitting portion of the driving shaft and the boss portion of the orbiting scroll member to vary the orbiting radius of the orbiting scroll member.
An arrangement adopted by the present invention is characterized in that the inner peripheral surface of the wrap portion of the orbiting scroll member and the outer peripheral surface of the wrap portion of the fixed scroll member contact each other at at least some region in the circumferential direction thereof, and a clearance is formed between the outer peripheral surface of the wrap portion of the orbiting scroll member and the inner peripheral surface of the wrap portion of the fixed scroll member over the entire periphery.
In the present invention, the wrap portion of the orbiting scroll member may be formed with a larger wall thickness than that of the wrap portion of the fixed scroll member by increasing the wall thickness of the wrap portion of the orbiting scroll member at the inner peripheral surface side thereof.
With the above-described arrangement, the inner peripheral surface of the wrap portion of the orbiting scroll member, which is formed with an increased wall thickness, contacts the outer peripheral surface of the wrap portion of the fixed scroll member at some region in the circumferential direction thereof. At this time, because the wrap portion of the orbiting scroll member has its wall thickness increased at the inner peripheral surface side thereof, the outer peripheral surface of the wrap portion of the orbiting scroll member and the inner peripheral surface of the wrap portion of the fixed scroll member can be separated from each other over the entire periphery. Therefore, a clearance can be formed between the outer peripheral surface of the wrap portion of the orbiting scroll member and the inner peripheral surface of the wrap portion of the fixed scroll member over the entire length of the peripheral surfaces of the wrap portion.
In the present invention, the wrap portion of the fixed scroll member may be formed with a smaller wall thickness than that of the wrap portion of the orbiting scroll member by reducing the wall thickness of the wrap portion of the fixed scroll member at the inner peripheral surface side thereof.
With the above-described arrangement, the inner peripheral surface of the wrap portion of the orbiting scroll member contacts the outer peripheral surface of the wrap portion of the fixed scroll member at some region in the circumferential direction thereof. At this time, because the wrap portion of the fixed scroll member has its wall thickness reduced at the inner peripheral surface side thereof, a clearance can be formed between the inner peripheral surface of the wrap portion of the fixed scroll member, which is formed with a reduced wall thickness, and the outer peripheral surface of the wrap portion of the orbiting scroll member over the entire length of the peripheral surfaces.
In the present invention, the wrap portion of the orbiting scroll member may be formed with a smaller wall thickness than that of the wrap portion of the fixed scroll member by reducing the wall thickness of the wrap portion of the orbiting scroll member at the outer peripheral surface side thereof.
With the above-described arrangement, the inner peripheral surface of the wrap portion of the orbiting scroll member contacts the outer peripheral surface of the wrap portion of the fixed scroll member at some region in the circumferential direction thereof. At this time, because the wrap portion of the orbiting scroll member has its wall thickness reduced at the outer peripheral surface side thereof, a clearance can be formed between the inner peripheral surface of the wrap portion of the fixed scroll member and the outer peripheral surface of the wrap portion of the orbiting scroll member, which is formed with a reduced wall thickness, over the entire length of the peripheral surfaces.
In the present

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scroll fluid machine having an orbiting radius varying... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scroll fluid machine having an orbiting radius varying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scroll fluid machine having an orbiting radius varying... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462906

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.