Screwless terminal

Electrical connectors – Contact comprising cutter – Insulation cutter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S409000, C439S404000, C439S402000

Reexamination Certificate

active

06527580

ABSTRACT:

The invention relates to a screwless terminal, in particular a series terminal, comprising an insulation displacement contact that is positioned inside a terminal housing for a conductor rail and is connected electrically conducting to this conductor rail. The electrical conductor can be inserted into the terminal housing via a feed-through in the housing and can be contacted between the opposite arranged cutting edges of this displacement contact.
A plurality of terminal embodiments for contacting and connecting electrical conductors are known, the so-called series-connected terminals, which can be snapped onto support rails or top hat rails. A distinction can be made between screw terminals, for which the electrical conductors are secured by means of clamping screws, and screwless terminals in the form of spring terminals, for which the electrical conductors are contacted through the clamping on of a pressure or tension spring. Whereas the conductor end to be contacted with the aforementioned screw terminals and the spring terminals is first stripped of insulation, so-called insulation displacement terminals or insulation displacement contacts permit a contacting of the conductor without stripping the insulation. Screwless terminals are generally used for contacting the conductor without stripping the insulation.
A screwless terminal using the insulation displacement technique is thus known from European Reference EP 0 691 706 B1, for which the conductor is moved with a translational movement and by means of an auxiliary element against an insulation displacement contact with blade-type cutting contacts. These cutting contacts penetrate the conductor insulation and make contact with the conductor core. The disadvantage of this terminal embodiment is that the openings for inserting the conductor on the one hand and those for the auxiliary element on the other hand are provided on different sides of the terminal housing. In many application cases, this makes the assembly and contacting of the conductor considerably more difficult.
This problem is avoided with a screwless terminal known from German Reference 195 41 137 A1, designed as electrical front wiring terminal, in that an insulation displacement contact positioned inside the terminal housing is pivoted with an actuation tool in a rotating movement against the conductor. This actuation tool is inserted into the terminal housing via the same housing side as the conductor. The disadvantage of this embodiment on the one hand is that the unsatisfactory electrical connection between the insulation displacement contact and the conductor rail connected thereto since this connection simultaneously represents the pivoting joint. Thus, only a practically point-shaped connection can be realized with simultaneous forced weakening of the conductor rail cross section. On the other hand, it is made considerably more difficult to detach the insulation displacement contacting.
Thus, it is the object of the invention to modify a screwless terminal of the aforementioned type, so as to permit a reliable insulation displacement contacting of a conductor while avoiding the aforementioned disadvantages and, at the same time, ensure an easy detachability.
This object is solved according to the invention with the features in claim
1
. For this, the insulation displacement contact is arranged so as to be displaceable on the conductor rail. With an immovably positioned conductor, the insulation displacement contacting occurs through a translational sliding movement of the insulation displacement contact along the conductor rail. In the process, opposite arranged cutting edges of the insulation displacement contact cut through the conductor rail insulation by forming a guide and cutting slot and make contact with its conductor core.
The insulation displacement contact has a U-shaped design in order to form the cutting edges, wherein the free ends of the U-shaped legs are bent toward each other to create the cutting and guide slot. The front edge of the insulation displacement contact, meaning of the cutting slot, which faces the conductor if the conductor is inserted into the terminal housing, in that case extends downward at a slant and has a scarfed design.
To be sure, the insulation displacement contacting disclosed in German References DE 298 02 674 U1 and DE 197 49 622 C1 is realized with the aid of a sliding carriage moved with a translational movement. However, the sliding carriages, made of insulating material for the known terminals, must be inserted as additional parts from the outside into the terminal housing or must be moved with a sliding movement on the inside of the housing. In addition, both these embodiments have the disadvantage that the conductor is moved together with the slider in the direction of an insulation displacement contact that is locally fixed inside the terminal housing, so that it can be inserted into its cutting slot.
Starting with this known sliding techniques, the invention is based on the concept that the number of components necessary for the insulation displacement contacting of the conductor can be reduced by moving the insulation displacement contact itself in a translational movement along the conductor rail. As a result, the insulation displacement contacting can occur while the conductor is simultaneously in the resting position, meaning it is immobile. In turn, this permits a particularly reliable and secure positioning and holding of the conductor during the insulation displacement contacting.
The conductor, advantageously positioned rigid and thus immovable inside the terminal housing, is held inside a sleeve-shaped guide following its insertion into the terminal housing and prior to the actual insulation displacement contacting. Above the cutting edges, this sleeve-shaped guide is formed by the housing feed-through and below the cutting edges by guide bars formed onto the insulation displacement contact and extending in longitudinal direction of the rail. These guide bars fit against the conductor prior to the insulation displacement contacting and thus hold the conductor between them.
The electrically conducting connection between the insulation displacement contact and the conductor rail can occur in different ways. The connection for one particularly preferred embodiment occurs by means of a sliding coupling that is formed below one front edge of the insulation displacement contact onto this contact and extends in longitudinal rail direction. The sliding coupling in the process is bent upward against an inward-bent conductor rail section, such that it fits against the underside of the conductor rail section. The bent-in conductor rail section of one useful modification of this embodiment has a free end, bent upward in the direction of the housing feed-through. On the back, meaning on the conductor side facing away from the insulation displacement contact, the free end functions as supporting web for the conductor.
According to an alternative embodiment, a sliding contact on the side is used to establish the electrically conducting connection between the insulation displacement contact and the conductor rail. The insulation displacement contact preferably has two sliding couplings for this, which fit against the opposite-arranged side edges of the conductor rail. With this embodiment, the conductor rail advantageously has a narrowed-down design in the sliding contact region, so that the sliding couplings that are preferably curved inward in the direction of the conductor rail do not or only insignificantly project on the side over the conductor rail.
The electrically conducting connection of another embodiment occurs with a lower and/or upper sliding contact, relative to the conductor rail. For this, a sliding coupling that is formed onto the insulation displacement contact fits against the conductor rail underside, against the conductor rail top, or against both sides of the conductor rail. The sliding coupling formed onto the insulation displacement contact in this case is bent toward the inside

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Screwless terminal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Screwless terminal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Screwless terminal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067445

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.