Screw-type skin seal with inflatable membrane

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S246000, C604S278000, C606S213000

Reexamination Certificate

active

06238373

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the field of surgical endoscopy, specifically to improvements in skin seals and cannulas.
BACKGROUND OF THE INVENTION
Surgical endoscopy is a surgical technique of using small diameter long-handled tools such as graspers, forceps, scissors, retractors, dissectors, and clamps specially designed to be inserted through small incisions in the skin (or other openings in the body) to perform operations within the body. The surgeon performing the surgery often cannot see the operation directly and must watch the procedure on a video monitor fed by an endoscopic camera or endoscope. Endoscopic surgery replaces open surgery, which requires large incisions, essentially opening the body cavity completely, in order to perform surgery deep within the body. Endoscopic techniques have been used for gall stone removal, gall bladder removal, hernia repair, tumor removal, lymph node removal, appendectomy, and many other operations. Endoscopic surgery is also called laparoscopic surgery, video assisted surgery, minimally invasive surgery, and bandaid surgery, but throughout this specification the term endoscopic surgery or laparoscopic surgery will be used.
To illustrate the background of the inventions described below, the example of the laparoscopic cholecystectomy, hernia repair or lymphadenectomy, as well as the operation for harvesting a blood vessel, will be used to illustrate both the old laparoscopic procedures and the new laparoscopic procedures now possible with the new devices. In the old procedure, a workspace was created in the abdomen using the process called pneumoperitoneum or insufflation. Insufflation is the process of injecting gas into the body to blow it up like a balloon, creating a chamber filled with gas. When performed on the abdomen, the peritoneum is inflated, and the procedure is known as pneumoperitoneum. The procedure can be used for inflating a space between the peritoneum and the skin to permit laparoscopic hernia repair, as illustrated in U.S. Pat. No. 5,496,345, issued to Kieturakis et al. and entitled “An Expansible Tunneling Apparatus for Creating an Anatomic Working Space.” Insufflation can be used also to inflate a tunnel-shaped work space over a blood vessel, to facilitate blood vessel harvesting as described in U.S. Pat. No. 5,601,589 entitled “Extraluminal Balloon Dissection Apparatus and Method,” incorporated herein by reference. While the chamber is filled with gas, the surgeon inserts long slender laparoscopic tools through trocars and cannulas that pierce the skin and provide access ports into the insufflated chamber.
For abdominal surgery such as a cholecystectomy (gall bladder removal), the insufflation is accomplished by the following procedure. An incision is made at the lower edge of the belly button or umbilicus. The surgeon uses his fingers or a blunt dissection tool such as a blunt nosed obturator to uncover the fascia or abdominal muscles, then a large needle, referred to as a Verres needle, is inserted into the abdomen or peritoneal cavity. The Verres needle punctures the fascia and peritoneum that cover the abdomen. A pressurized gas such as CO
2
is injected into the abdomen through the needle, in effect inflating the abdomen like a balloon. After the abdomen is inflated, the Verres needle is removed. After the needle is removed, trocars and cannulas are inserted into the space created by the insufflation. Endoscopic instruments, including an endoscope or laparoscope, scissors, graspers, etc., are inserted into the abdomen through the cannulas and manipulated to dissect tissue surrounding the gall bladder, remove the gall bladder, and stitch the internal wounds.
To harvest the saphenous vein using laparoscopic procedures, the surgeon may insufflate a tunnel-shaped workspace over a blood vessel. The tunnel is first created using obturators or tunneling devices, or balloons inserted through small incisions along or over the saphenous vein. After the tunnel is created, the surgeon may insert skin seals and cannulas, and insufflation gas is injected through one of the trocars. While the tunnel is insufflated, the cannulas permit the surgeon to insert laparoscopic instruments into the tunnel to perform surgery on the saphenous vein.
The cannula used in the procedures described above is a length of rigid tube. The trocars and cannula are designed to allow laparoscopic instruments to pass through them and prevent gas from escaping the abdomen or other insufflated work space. The cannula may have a flapper valve or a trumpet valve inside which opens to allow an endoscope or laparoscope or other instrument to pass through, and valve closes when the laparoscope is removed. Some trocar/cannula devices also contain a duckbill valve to assist in sealing the trocar. The cannulas are typically about 6 inches or 15 centimeters long, and come in diameters matching various laparoscopic devices, generally from 2 to 15 mm.
Some surgeons use bare cannulas, secured only by a tight fit with the skin and fascia. However, cannulas frequently slip out of the body during use, disrupting the procedure and possibly endangering the patient. To prevent this danger, surgeons have devised a variety of methods to secure the cannula to the body and prevent it from slipping out of the body. Some cannulas are provided with threaded sleeves fixed to the cannula. Some cannulas are provided with a threaded gripper with a smooth inner bore that matches the size of the cannula, so that the cannula can slide inside the gripper as shown in FIG.
2
. The gripper stabilizes the cannula so that it will not slip out of the body inadvertently, but can be easily slipped out when the surgeon wants. The threaded gripper is simply screwed into the incision in the skin. This option permits the ready insertion and removal of smooth walled cannulas by sliding them in and out of the gripper. Other grippers have been used, such as the gripper with expandable arms, the gripper with inflatable balloon on the outside, and the Hasson cannula. These devices are illustrated in Oshinsky, et al., Laparoscopic Entry and Exit, reprinted in Urologic Laparoscopy at 91-101, (Das & Crawford ed. 1994). These devices are variously referred to as threaded skin seals, screw skin seals, skin anchors, obturators, grippers, trocar stabilizers, or cannula stabilizers.
The surgeon usually needs to place several trocars and cannulas into the abdomen and inserts as many as needed to accomplish the intended operation. The first cannula placed through the belly button is used to insert a laparoscope so that the placement of other trocars and cannulas can be viewed from inside the abdomen. After several cannulas are in place, the surgeon can view the procedure through any port and can insert laparoscopic scissors, cutters and graspers, and other tools through the cannulas in order to perform the surgery. The typical endoscopic graspers
3
used for stitching inside the abdomen are shown, deployed inside the cannulas, in
FIG. 2. A
bare cannula
4
is used with endoscopic graspers
3
a.
Another pair of laparoscopic graspers
3
b
is inserted into a cannula
4
a
that is inserted through a threaded gripper
5
. A third cannula
6
, shown with a threaded outer surface, is provided for an endoscope
34
that is inserted into the workspace to provide the surgeon with a video view of the graspers and body tissue.
The arrangement of the cannulas and trocars is required because the abdomen must be inflated to make room for the surgeon to work. The small diameter of the cannulas keeps the incisions small, and the matching diameter of the laparoscopic instruments is necessary to prevent leakage of the insufflation gas from the abdomen. Laparoscopic instruments of various designs are available, and they generally are about 5 to 12 mm in diameter (to match the inside bore of the cannulas) and about 10 to 40 cm in length. They are long and therefore difficult to use, and they are usually used when the surgeon can see them only through the laparoscope. Modern laparoscopic procedures req

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Screw-type skin seal with inflatable membrane does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Screw-type skin seal with inflatable membrane, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Screw-type skin seal with inflatable membrane will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560609

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.