Screening methods for identifying viral proteins with...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S029000, C435S235100, C435S236000

Reexamination Certificate

active

06635416

ABSTRACT:

1. INTRODUCTION
The present invention relates, in general, to a screening method for identifying novel viral proteins with interferon antagonizing function, and the use of such proteins in isolating various types of attenuated viruses for the development of vaccine and pharmaceutical formulations. The invention also relates to the use of viral interferon antagonists in screening assays to identify potential anti-viral agents. The invention further relates to protocols utilizing interferon antagonists, e.g., NS1, to enhance gene therapy or DNA vaccination based on their ability to increase gene expression.
2. BACKGROUND OF THE INVENTION
One important component of the host antiviral response is the type I IFN system. Type I IFN is synthesized in response to viral infection. Double stranded RNA (dsRNA) or viral infection activate latent transcription factors, including IRF-3 and NF-
k
B, resulting in transcriptional up-regulation of type I IFN, IFN-&agr;, and IFN-&bgr; genes. Secreted type I IFNs signal through a common receptor, activating the JAK/STAT signaling pathway. This signaling stimulates transcription of IFN-sensitive genes, including a number of that encode antiviral proteins, and leads to the induction of an antiviral state. Among the antiviral proteins induced in response to type I IFN are dsRNA-dependent protein kinase R (PKR). 2′,5′-oligoadenylate synthetase (OSA), and the Mx proteins (Clemens et al., 1997 Interferon Cytokine Res. 17:503-524; Floyd-Smith et al., 1981 Science 212:1030-1032; Haller et al., 1998 Rev. Sci Tech 17:220-230; Stark et al., Annu Rev. Biochem 67:227-264).
Many viruses have evolved mechanisms to subvert the host IFN response. For example, the herpes simplex virus counteracts the PKR-mediated phosphorylation of translation initiation factor cIF-2&agr;, preventing the establishment of an IFN-induced block in protein synthesis (Garcia-Sastre et al. 1998 Virology 252 (2):324-30). In the negative-strand RNA viruses, several different anti-IFN mechanisms have been identified (Garcia-Sastre et al., 1998 Virology 252:324-330).
Citation of a reference in this section or any section of this application shall not be construed as an admission that such reference is prior art to the present invention.
3. SUMMARY OF THE INVENTION
The invention relates to screening methods for viral proteins with interferon antagonizing function based on transfection-based assays using various types of negative strand RNA viruses. The identified interferon antagonists can be used for several applications. The invention relates to attenuated viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. Further, the present invention relates to viruses which have been mutated to impair the virus's ability to antagonize cellular interferon responses, impaired viruses or viruses with impaired interferon antagonist activity. The present invention also relates to growth substrates which support the growth of viruses, both naturally occurring and mutagenized, which have an impaired ability to antagonize the cellular interferon response, for diagnostic or therapeutic purposes.
The present invention relates to transfection-based assays to identify viral proteins with interferon-antagonizing activities. Once such viral proteins have been identified, genes encoding these proteins can be targeted to create attenuated viruses for the development of vaccines. Further, the viral proteins identified to have interferon-antagonizing activities can be used to support the growth of viruses with impaired abilities to antagonize cellular interferon responses for diagnostic, therapeutic or research protocols.
In a preferred embodiment, the present invention relates to screening assays to identify potential antiviral agents which inhibit the ability of the virus to antagonize cellular interferon responses. Thus, the identified viral proteins which antagonize interferon responses will also have utility in screening for and developing novel antiviral agents.
The present invention also relates to the substrates designed for the isolation, identification and growth of viruses for vaccine purposes as well as diagnostic and research purposes. In particular, interferon-deficient substrates for efficiently growing influenza virus mutants are described. In accordance with the present invention, an interferon-deficient substrate is one that is defective in its ability to produce or respond to interferon. The substrate of the present invention may be used for the growth of any number of viruses which may require interferon-deficient growth environment.
Furthermore, cell lines expressing viral proteins with interferon-antagonizing properties are encompassed by the present invention. These proteins include, for example, NS1 and other analogous proteins originating from various types of viruses. Such viruses may include, but are not limited to paramyxoviruses (Sendai virus, parainfluenza virus, mumps, Newcastle disease virus), morbilliviruses (measles virus, canine distemper virus and rinderpest virus); pneumoviruses (respiratory syncytial virus and bovine respiratory virus); rhabdoviruses (vesicular stomatitis virus and lyssavirus); RNA viruses, including hepatitis C virus and retroviruses, and DNA viruses, including vaccinia, adenoviruses, hepadna viruses, herpes viruses and poxviruses.
Any number of viruses may be used in accordance with the present invention, including DNA viruses, e.g., vaccinia, adenoviruses, hepadna viruses, herpes viruses, poxviruses, and parvoviruses; and RNA viruses, including hepatitis C3 virus, retrovirus, and segmented and non-segmented RNA viruses. The viruses can have segmented or non-segmented genomes and can be selected from naturally occurring strains, variants or mutants; mutagenized viruses (e.g., by exposure to UV irradiation, mutagens, and/or passaging); reassortants (for viruses with segmented genomes); and/or genetically engineered viruses. For example, the mutant viruses can be generated by natural variation, exposure to UV irradiation, exposure to chemical mutagens, by passaging in non-permissive hosts, by reassortment (i.e., by coinfection of an attenuated segmented virus with another strain having the desired antigens), and/or by genetic engineering (e.g., using “reverse genetics”). The viruses selected for use in the invention have defective IFN antagonist activity and are attenuated; i.e., they are infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic. Such attenuated viruses are ideal candidates for live vaccines.
The invention is based, in part, on a number of discoveries and observations made by the Applicants when working with influenza virus mutants. However, the principles can be analogously applied and extrapolated to other segmented and non-segmented negative strand RNA viruses including, but not limited to paramyxoviruses (Sendai virus, parainfluenza virus, mumps, Newcastle disease virus), morbilliviruses (measles virus, canine distemper virus and rinderpest virus); pneumoviruses (respiratory syncytial virus and bovine respiratory virus); and rhabdoviruses (vesicular stomatitis virus and lyssavirus), and vaccinia, adenoviruses, hepadna viruses, herpes viruses and poxviruses.
First, the IFN response is important for containing viral infection in vivo. The Applicants found that growth of wild-type influenza virus A/WSN/33 in IFN-deficient mice (STAT1−/− mice) resulted in pan-organ infection; i.e., viral infection was not confined to the lungs as it is in wild-type mice which generate an IFN response (Garcia-Sastre, et al., 1998, J. Virol. 72:8550, which is incorporated by reference herein in its entirety). Second, the Applicants established that NS1 of influenza virus functions as an IFN antagonist.
The invention also relates to the use of the attenuated virus of the invention in vaccines and pharmaceutical preparations for humans or animal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Screening methods for identifying viral proteins with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Screening methods for identifying viral proteins with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Screening methods for identifying viral proteins with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3150367

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.