Screening assays for the interaction of semaphorins and...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007200, C435S007210, C435S007800, C435S021000

Reexamination Certificate

active

06428965

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention is related to the field of developmental biology. In particular it is related to the area of axon guidance cues.
BACKGROUND OF THE INVENTION
The complex wiring of the adult nervous system is dependent upon the occurrence during neurodevelopment of an ordered series of axon guidance decisions that ultimately lead to the establishment of precise connections between neurons and their appropriate targets. These guidance events can act over long or short distances, and they can be either attractive or repulsive in nature (Tessier-Lavigne and Goodman, 1996). An important first step in elucidating the mechanisms by which long-distance clemotropic cues mediate axon guidance is identification of the receptors that bind these cues. Identification of two plylogenetically conserved gene families, the semaphorins and the netrins, has advanced our understanding of the cellular and molecular basis of long-range influences on axon guidance. Semaphorins and netrins function as chemotropic cues for specifac populations of neurons during development (Keynes and Cook, 1995). The netrins have been implicated in long-range attractive and repulsive guidance events in Caenorhabditis elegans (UNC-6), vertebrates (netrin-1 and netrin-2), and Drosopila (netrin-A and netrin-B) (Serafini et al., 1994; Varela-Eclavarria et al., 1997). Genetic studies in both invertebrates and vertebrates, and biochemical studies in vertebrates, show that two immunoglobulin (Ig) superfamily subgroups, one including the Deleted in Colorectal Cancer (DCC), UNC-40, and Frazzled proteins, and the other including the UNC-5, UNC5H1, UNC5H2, and RCM proteins, contain netrin receptors involved in mediating attractive and repulsive netrin functions (Tessier-Lavigne and Goodman, 1996; Ackerman et al., 1997; Fazeli et al., 1997; Leonardo et al., 1997). At present, however, semaphorin receptors have not been identified.
The semaphorins comprise a large family of both transmembrane and secreted glycoproteins, suggesting that some semaphorins act at a distance while others act locally (Kolodkin, 1996; Puschel, 1996). Semaphorpins are defined by a well-conserved extracellular semaphorin (sema) domain of approximately 500 amino acids. Secreted semaphorins contain an Ig domain that is C-terminal to the sema domain, while transmembrane semaphorins can have an Ig domain, type 1 thrombospondin repeat, or no obvious domain motif N-terminal to their transmembrane domain. Semaphorins are present in a variety of neuronal and non-neuronal tissues. Their function in neuronal growth cone guidance, however, has been addressed most extensively.
Two secreted semaphorins, vertebrate collapsin-1/Sema III/Sem D (species homologues) and Drosophia semaphorin II (D-sema II) (Matthes et al., 1995), have been shown to function selectively in repulsive growth cone guidance during development. Collapsin-1 (Coll-1) was identified in a search for growth cone collapsing factors from the membranes of adult click brain tissue (Luo et al., 1993). Acute application of recombinant Coll-1 induces the collapse of a subset of dorsal-root-ganglia (DRG) neuron growth cones at sub-nanomolar concentrations, but has no effect on chicken retinal ganglion cell growth cones. Brain-derived membrane extracts enriched for Coll-1 and immobilized to beads, however, provided sensory neurons in culture with a localized repulsive cue capable of steering growth cones away from beads rather than causing complete growth cone collapse (Fan and Raper, 1995).
Genes encoding human, rat and mouse Sema III/Sem D (referred to below as Sema III) were identified based on their similarity to other semaphorins (Giger et al., 1996; Kolodkin et al., 1993; Messersmith et al., 1995; Puschel et al., 1995). Sema III can act as a chemorepellent for NGF-dependent embryonic (E14) DRG sensory neurons. It has little effect, however, on neurotrophin-3 (NT-3)-responsive E14 DRG sensory afferents. The E14 ventral spinal cord secretes a chemorepellent activity selective for NGF-, not NT-3-, dependent E14 DRG sensory afferents (Fitzgerald et al., 1993; Messersmith et al., 1995; Puschel et al., 1996). This correlates well with the expression pattern of sema III in the ventral cord during the time of sensory afferent innervation, and the segregation of NT-3- and NGF-dependent sensory afferents, respectively, into ventral and dorsal targets in the spinal cord (Messersmith et al., 1995).
Indeed, antibody perturbation of Coll-1 at analogous stages in chick neurodevelopment supports the idea that Coll-1 is the ventral cord repellent (Shepherd et al., 1997). This is further supported by the observation that mice with a targeted deletion of the sema III gene exhibit defects in the trajectories of certain NGF-responsive sensory afferents (Behar et al., 1996). In addition, functional studies show that Sema III can act as a chemorepellent for spinal motor neurons and a subset of cranial motor neurons (Varela-Echavarria et al., 1997). Coupled with extensive analysis of sema III and Coll-1 expression (Giger et al., 1996; Shepherd et al., 1996; Wright et al., 1995), all of these data suggest that specific populations of embryonic and adult neurons require Sema III for establishment, and possibly maintenance, of their appropriate patterns of connections. The rapid response of DRG growth cones in culture to Coll-1 and Sema III, and the low concentrations of these factors needed to elicit a response, strongly suggest that a receptor-meldated signal transluction mechanism underlies the action of these proteins on the cytoskeletal reorganization events that ultimately influence growth cone guidance.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of monitoring the interaction of a semaphorin and a neuropilin.
It is another object of the present invention to provide an isolated and purified subgenomic nucleic acid molecule which encodes a new mammalian neuropilin.
It is an object of the present invention to provide a method of identifying axon guidance cues.
Another object of the invention is to provide a method for monitoring the interaction between a semaphorin and a neuropilin so that agonists and antagonists can be identified.
Another object of the invention is to provide a polypeptide useful for antagonizing the interaction between a semaphorin and a neuropilin.
Another object of the invention is to provide a polypeptide useful for antagonizing the interaction between a semaphorin and a neuropilin.
It is still another embodiment of the invention to provide an antibody preparation useful for isolating and detecting a neuropilin protein.
It is yet another object of the invention to provide an isolated and purified mammalian neuropilin protein.
These and other objects of the invention are achieved by one or more of the embodiments described below. In one embodiment a method of monitoring the interaction of a semaphorin and a neuropilin is provided. The method comprises the steps of:
contacting a first protein comprising an extracellular domain of a neuropilin with a second protein which comprises an extracellular domain of a semaphorin under conditions where the extracellular domain of the neuropilin binds to the extracellular domain of the semaphorin;
determining the binding of the first protein to the second protein or second protein to the first protein.
According to yet another embodiment an isolated and purified subgenomic nucleic acid molecule is provided. The molecule encodes a mammalian neuropilin-2 and has at least 90% sequence identity to SEQ ID NO: 1.
In yet another embodiment of the invention a method of identifying axon guidance cues is provided. The method comprises the steps of:
contacting a detectably labeled mammalian neuropilin protein or semaphorin-binding portion thereof with a mixture of proteins secreted by neuronal cells;
removing proteins of the mixture which do not bind to the detectably labeled mammalian neuropilin; wherein a protein of the mixture which binds to the detectably labeled mammalian neuropilin or said portion is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Screening assays for the interaction of semaphorins and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Screening assays for the interaction of semaphorins and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Screening assays for the interaction of semaphorins and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2938049

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.