Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...
Reexamination Certificate
1999-09-28
2001-03-20
Yoon, Tae (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Compositions to be polymerized by wave energy wherein said...
C522S044000, C522S046000, C522S100000, C524S404000, C524S428000, C524S496000, C523S440000
Reexamination Certificate
active
06204303
ABSTRACT:
FIELD OF THE INVENTION
This invention concerns an electronic material for use in connection with heat generating electronic devices. More particularly, this invention concerns a new coating material, containing thermally conductive particles such as boron nitride, for forming an improved thermally conductive layer and its method of application to a heat dissipation device for the purpose of transferring waste heat from an electronic heat generating source.
PRIOR ART
In the field of microprocessors and other types of electronic heat generating sources, it is well-known to use a thermally conducting organic interface material, filled with thermally conductive fillers or powders, as a heat transfer medium between a heat sink and the heat generating source. In particular, polysiloxane oils or polysiloxane elastomeric rubbers and thermoplastic materials such as PVC, polypropylene, etc. loaded with thermally conducting ceramics or other fillers such as aluminum nitride, boron nitride, diamond or zinc oxide have been used to impart thermally conducting properties to the organic phase.
In the case of polysiloxane oils loaded with thermally conducting materials, these materials are applied by smearing the heat sink or other electronic component with the thermally conducting paste and then securing the heat sink in place by mechanical means using clips or screws. In the case of polysiloxane rubbers and thermoplastic polymers, these materials are typically cast in sheet form and die cut into shapes corresponding to the shape of the heat sink and heat generating device. The resulting preform is then applied to the surface of the heat generating surface securing the heat sink by means of clips or screws.
Thermal greases are also used to conduct heat in electronic devices. The prior art thermal greases show superior film forming and gap filling characteristics between uneven surfaces thus providing an intimate contact between the surface of the heat sink and the surface of the heat generating source. However, it has been found that the use of thermal greases exhibit poor adhesions to the surfaces of the heat sink and heat generating surface, thus effectively seeping out from between the heat sink and the heat generating surface, causing air voids to form between the two surfaces leading to hot spots. Moreover, excessive pressure placed upon the heat sink by the mechanical fasteners accelerates this seepage from between the heat sink and the surface of the heat generating surface. It has been reported that excessive squeeze out of polysiloxane oils can evaporate and recondense on sensitive parts of the surrounding microcircuits. The recondensed oils lead to the formation of silicates thereby interfering with the function of the microprocessor and eventually causing failure.
The precut films solve the problems associated with greases but do not provide adequate intimate contact required for optimum heat transference between the heat generating source and the heat sink. Typical precut films do not show the film forming capacity as do the thermal greases. The added step of cutting preforms and manually applying the pad adds cost to the assembly process. Furthermore, these types of materials show variable performance due to variation in the thickness of the pad and the amount of pressure applied to the thermally conducting precut film, based upon the mechanical device or action used to secure the heat sink.
SUMMARY OF THE INVENTION
The present invention provides a new and improved composition for forming a thermally conducting polymeric interface layer or film for use in electronic applications, and a method of using such material. A suspension of thermally conducting filler is used to impart thermal conduction properties to the screen printable coating material system or gel. When cured, this thermally conducting thermal interface, being highly compressive, forms an intimate contact between the heat source and the heat sink. The material composition includes one or more UV curable acrylated materials that are cured via the use of catalysts and UV light into a highly compressible thermal interface. Since this material is a thermoset, no squeeze out of the material can occur subsequent to curing.
After the material composition is prepared, it is then screen printed to a film thickness onto the surface of a heat sink or other electronic component and then cured. The resultant film formed upon the heat sink or other device can be controlled to close tolerances, thereby imparting a consistent thickness and thereby allowing the uniform transfer of heat. The cured film being slightly compressive facilitates the touching of the particles of the thermally conductive filler and can conform to an uneven topography of the heat source. Typical prior art preform films do not have good compressibility, which results in poor intimate contact between the surface of the heat sink and the heat generating source. Because of the screenable nature of this material, variable die sizes can be quickly made up when using the thermal interface material of the present invention. The film formed by the interface material of the present invention is substantially noncorrosive and it will not creep or bleed-out under applied pressure.
An example of an application for which the composition of the present invention may be employed may be found in U.S. Pat. No. 5,313,099. The '099 reference which is incorporated herein by reference discloses a heat dissipating device such as a heat sink for use in connection with solid-state devices. The composition of the present invention would be utilized on the contact surfaces between the heat sink and the solid-state device in order to ensure the flow of heat from the device to the heat sink. In such an application the cured composition is sandwiched between the heat generating device and the heat dissipating device and such cured composition serves to facilitate the transfer of heat between the devices.
In a preferred embodiment the UV curable composition comprises by weight from about 35% to about 75% of a UV curable acrylate material, from about .5% to about 15% catalyst, from about 10% to about 30% hydrocarbon solvent and from about 20% to about 70% conductive filler. In order to be screen printable, the composition displays a viscosity of from about 5,000 to about 50,000 centipoise at 25° C. using a 1 RPM HBT (CP51). Also, upon curing the composition displays a modulus of from about 300,000 to about 600,000 at 25° C. and a thermal conductivity of at least 1.5 (W/m° K).
These and other aspects of the present invention will become clear to those skilled in the art upon the reading and understanding of the specification and the claims below.
DETAILED DESCRIPTION
The thermally conductive material composition of the present invention comprises a UV curable material, a catalyst, a thermally conductive filler and a hydrocarbon solvent.
Acrylate materials suitable for use in the present invention include polymers and monomers of acrylic acid or its esters including polymers and monomers of methyl methacrylate. Examples of suitable acrylate oligomer materials suitable for use in the present invention include, for example, bisphenol A epoxy acrylate, bisphenol diacrylate, polyester acrylate oligomer, acrylated epoxy linseed oil, acrylated epoxy soya oil, aliphatic urethane, acylata and acrylated, diacrylated, triacrylated and methoxy ether acrylates such as tetraethylene glycol dimethacrylate, and mixtures of the foregoing.
In addition to an acrylate oligomer, the composition also preferably includes an acrylate monomer. Examples of such monomers include monofunctional acrylates such as phenol ethoxylate monoacrylate, difunctional acrylates such as tripropylene diacrylate, and trifunctional acrylates such as trimethlolpropane ethoxylate triacrylate. Mixtures of the foregoing monomer materials may also be employed.
The composition also contains a hydrocarbon solvent. In addition to facilitating the screen printing of the composition, the solvent serves to facilitate the complete wetting o
Mason Keith M.
Osuna Jesus E.
Stygar Vernon E.
Ferro Corporation
Rankin, Hill Porter & Clark LLP
Yoon Tae
LandOfFree
Screen printable curable conductive material composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Screen printable curable conductive material composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Screen printable curable conductive material composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2481300