Scratch resistant layer for imaging elements

Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Identified backing or protective layer containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S531000, C430S533000, C430S536000, C430S961000

Reexamination Certificate

active

06346369

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to imaging elements having an improved scratch resistant layer. In particular, this invention relates to scratch resistant layers comprising a ductile polymer and a hard filler.
BACKGROUND OF THE INVENTION
Microscratches are scratches that are on the order of several microns in width and submicron to microns in depth. They are commonly observed on the front and back sides of photographic films, on photoconductor belts, on thermal prints, and on PhotoCD disks. They are caused by sliding contact of imaging products with dirt particles or other asperities that have micron-sized contact radii. These scratches can affect analog or digital image transfer and degrade the output image quality. Their presence on magnetic or conductive backings could lessen the performance of these functional coatings. Thus, scratch resistance protective coatings on the front or back or both sides of an imaging product are commonly required.
Since all imaging products are based on flexible substrates for ease of transport, conveyance, and manufacturing, hard metallic or ceramic tribological scratch resistant coatings are not suitable due to their mechanical incompatibility with the polymeric flexible substrates. This mechanical incompatibility can cause adhesion failure between the coating and the substrate during scratching. Polymeric coatings are thus preferable as the scratch resistant layer for imaging products. However, with the requirements for high light transmission, low material cost, low internal drying stress, and high coating speeds, the thickness of these scratch resistant coatings is preferably about 10 microns or less.
During micro-scratching of a micron-thick coating, complex stress fields develop in the coating, within which high internal shear stress, interfacial shear stress, and surface tensile stress are present. A coating can fail either by shear fracture, delamination, or tensile cracking depending on the relative shear, adhesive, and tensile strengths of the coating. Using a micro-scratching instrument with a single micron-sized stylus, the resistance to scratch damage for a coating can be measured. Combining this instrument with optical microscopy, the failure mode, such as shear fracture, delamination, or tensile cracking, can be determined. All these failure modes produce scratches that are printable and scanable and, thus, unacceptable for imaging products. A permanent scratch track resulting from plastic deformation of a ductile coating without coating failure is also printable and scanable, and thus, not desirable.
Various types of polymeric coatings have been examined as scratch resistant coatings for imaging products. These include coatings comprising brittle, ductile, elastic-plastic, or rubber-elastic polymeric materials. Brittle polymers with elongations to break less than 5%, such as poly(methyl methacrylate) and poly(styrene) are not desirable as scratch resistant coatings for imaging products. Regardless of the coating thickness, the brittleness of these materials leads to printable surface tensile cracks during scratching. Soft elastomers (rubber-elastic materials), such as urethane rubbers, acrylic rubbers, silicone rubbers, are not suitable as scratch resistant coatings since deep penetration of the asperity or stylus occurs in these soft coatings which causes these elastomeric coatings to fail at low loads during scratching. Using stiff fillers to increase the stiffness of these elastomers to reduce stylus penetration does not solve this problem since permanent and printable scratch tracks result in elastomeric coatings containing stiff fillers by the induced coating plasticity under the presence of stiff fillers.
Ductile elastic-plastic coatings with elongations to break greater than 10%, such as glassy polyurethanes, polycarbonate, cellulose esters, etc., exhibit shear-fracture-type scratch damage during scratching that result from plastic flow. Plastic flow in these ductile coatings during scratching is controlled by the coating thickness. For thin coatings of these materials, plastic flow in the coating during scratching is restricted by the coating adhesion to the substrate leading to a premature failure of the coatings at low loads. Thicker coatings for these materials may have improved resistance to coating failure, however, for imaging products these thicknesses may be impractical. In addition, although thick ductile coatings have improved resistance to coating failure during scratching, the low yield strength and modulus for these materials result in the formation of permanent scratch tracks in the coatings at low loads. As an approach to prevent permanent scratch track formation, the yield strength of a ductile coating can be increased with the addition of stiff fillers. However, with the incorporation of stiff fillers, the elongation to break for these coatings are reduced significantly due to constrained plastic flow which is limited by the filler. This means that although the formation of a permanent scratch track can be delayed to higher loads with the addition of stiff fillers, the load required for coating failure is lowered accordingly. The failure mode is also changed from shear fracture to tensile cracking with the addition of stiff fillers. In addition, with the addition of high concentrations of fillers, the coatings may crack during drying due to the high internal drying stresses.
It can be seen that various approaches have been attempted to obtain an improved scratch resistant layer for imaging products. However, the aforementioned methods have met with only limited success. The present invention provides a coating composition with excellent resistance to the formation of permanent scratch tracks and coating failure when an imaging product is exposed to sharp asperities or other conditions that may lead to scratches during the manufacture and use of the imaging product.
SUMMARY OF THE INVENTION
The present invention is an imaging element which includes a support and at least one imaging layer superposed on the support. The imaging layer includes a scratch resistant outermost layer either overlying the imaging layer or on the side opposite the imaging layer, and is composed of a ductile polymer having a modulus greater than 100 MPa measured at 20° C. and a tensile elongation to break greater than 50 percent, and a stiff filler having a modulus greater than 10 GPa at a volume concentration in the scratch resistant layer of 30 to 60%. The scratch resistant layer has a thickness of at least 0.5 &mgr;m.
DETAILED DESCRIPTION OF THE INVENTION
The imaging elements of this invention can be of many different types depending on the particular use for which they are intended. Such elements include, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording and thermal-dye-transfer imaging elements. Imaging elements can comprise any of a wide variety of supports. Typical supports include cellulose nitrate film, cellulose acetate film, poly(vinyl acetal) film, polystyrene film, poly(ethylene terephthalate) film, poly(ethylene naphthalate) film, polycarbonate film, glass, metal, paper, polymer-coated paper, and the like.
Details with respect to the composition and function of a wide variety of different imaging elements are provided in U.S. Pat. No. 5,340,676 and references described therein. The present invention can be effectively employed in conjunction with any of the imaging elements described in the '676 patent.
In a particularly preferred embodiment, the imaging elements of this invention are photographic elements, such as photographic films, photographic papers or photographic glass plates, in which the image-forming layer is a radiation-sensitive silver halide emulsion layer. Such emulsion layers typically comprise a film-forming hydrophilic colloid. The most commonly used of these is gelatin and gelatin is a particularly preferred material for use in this invention. Useful gelatins include alkali-treated gelatin (cattle bone or hid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scratch resistant layer for imaging elements does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scratch resistant layer for imaging elements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scratch resistant layer for imaging elements will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954908

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.