Scintillator panel and radiation image sensor

Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06573506

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a scintillator panel and a radiation image sensor which are used for medical X-ray photography and the like.
2. Related Background Art
While X-ray sensitive films have been used in medical and industrial X-ray photography, radiation imaging systems using radiation detecting devices have been coming into wider use from the viewpoint of convenience and their storability of photographed results. In such a radiation imaging system, pixel data caused by two-dimensional radiation are acquired by a radiation detecting device as an electric signal, which is then processed by a processing unit, so as to be displayed onto a monitor.
Conventionally known as a scintillator panel for a radiation detecting device is one disclosed in Japanese Patent Application Laid-Open No. SHO 63-215987. In this scintillator panel, a scintillator made of CsI, which is a typical scintillator material, is formed on a fiber optical plate (FOP), i.e., an optical part constituted by a plurality of optical fibers bundled together. Since this scintillator is deliquescent, a water-impermeable protective film, i.e., polyparaxylylene film, is formed on the upper side of the scintillator, so as to protect the scintillator against moisture.
SUMMARY OF THE INVENTION
However, since side walls of the FOP are ground to flat surfaces, there have been cases where the polyparaxylylene film peels. Namely, when connecting a scintillator panel in which a scintillator is protected by a polyparaxylylene film to an imaging device (e.g., CCD or MOS-type solid-state image sensor) and the like, there are cases where side walls of the FOP are held with fingers, tweezers, or the like or are held with a jig in order to strictly carry out the positioning with respect to the imaging device, whereby the polyparaxylylene film may peel due to a frictional force acting on the polyparaxylylene film, thus allowing water to infiltrate therefrom, which is problematic in that characteristics of the scintillator, such as the resolution thereof in particular, deteriorate.
It is an object of the present invention to provide a scintillator panel and a radiation image sensor which can prevent the protective film of scintillator from peeling.
The present invention provides a scintillator panel comprising a scintillator formed on a substrate and a transparent organic film covering over the scintillator, wherein the substrate comprises a protective film peeling prevention rough at a portion thereon coming into contact with the transparent organic film surrounding the scintillator so as to contact with said transparent organic film.
Or the substrate may comprise the protective film peeling prevention rough at a portion coming into contact with the transparent organic film on the opposite side of the scintillator formed so as to contact with the transparent organic film.
According to the present invention, since the transparent organic film for protecting the scintillator is formed so as to reach the protective film peeling prevention rough provided in the substrate, the contact area between the transparent organic film and substrate is enhanced by the protective film peeling prevention rough, whereby the transparent organic film can be prevented from peeling.
The present invention is characterized in that a side wall of the substrate of the scintillator panel comprises the protective film peeling prevention rough. Since the protective film peeling prevention rough is disposed at a sidewall of the substrate, the present invention can prevent the transparent organic film from peeling even when a frictional force acts from the underside of the substrate toward the surface and the like.
The present invention is characterized in that the substrate of the scintillator panel is a fiber optical plate. According to the present invention, even when connected to an imaging device by way of the fiber optical plate so as to constitute a radiation image sensor, the transparent organic film can be prevented from peeling.
The present invention is characterized in that the substrate of the scintillator panel is a substrate made of Al. Also, the present invention is characterized in that the substrate of the scintillator panel is a substrate mainly composed of carbon.
The radiation image sensor of the present invention is characterized in that it further comprises an imaging device on the substrate side of the scintillator panel. Also, the radiation image sensor of the present invention is characterized in that it further comprises an imaging device on the top side of the scintillator of the scintillator panel. According to the radiation image sensor of the present invention, since the transparent organic film for protecting the scintillator is formed so as to reach the protective film peeling prevention rough provided in the substrate, the contact area between the transparent organic film and substrate is enhanced by the protective film peeling prevention rough, whereby the transparent organic film can be prevented from peeling.
The present invention provides a radiation image sensor comprising a deliquescent scintillator formed on an imaging device and a transparent organic film covering over the scintillator, wherein the imaging device comprises a protective film peeling prevention rough in at least a part of a portion thereof coming into contact with the transparent organic film. According to the present invention, since the transparent organic film for protecting the scintillator is formed so as to reach the protective film peeling prevention rough provided in the imaging device, the contact area between the transparent organic film and imaging device is enhanced by the protective film peeling prevention rough, whereby the transparent organic film can be prevented from peeling.
The radiation image sensor of the present invention is characterized in that the imaging device of the radiation image sensor comprises a protective film peeling prevention rough at a side wall thereof. Since the protective film peeling prevention rough is disposed at a side wall of the imaging device, the present invention can prevent the transparent organic film from peeling even when a frictional force acts from the underside of the imaging device toward the surface and the like.
The transparent organic film may cover all over the substrate for securely protecting the scintillator from the moisture.
The present invention will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the present invention.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.


REFERENCES:
patent: 3917950 (1975-11-01), Carlson
patent: 4145609 (1979-03-01), Takami et al.
patent: 5148029 (1992-09-01), Persyk et al.
patent: 6172371 (2001-01-01), DeJule et al.
patent: 61-29788 (1986-02-01), None
patent: 62-216234 (1987-09-01), None
patent: 63-215987 (1988-09-01), None
patent: 63-215987 (1988-09-01), None
patent: 63-216000 (1988-09-01), None
patent: 5-196742 (1993-08-01), None
patent: 5-203755 (1993-08-01), None
patent: 5-242841 (1993-09-01), None
patent: 7-27863 (1995-01-01), None
patent: 7-174857 (1995-07-01), None
patent: 7-244164 (1995-09-01), None
patent: 8-227520 (1996-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scintillator panel and radiation image sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scintillator panel and radiation image sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scintillator panel and radiation image sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3086930

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.