Electrical computers and digital processing systems: multicomput – Computer-to-computer data addressing
Reexamination Certificate
2000-07-25
2004-12-28
Najjar, Saleh (Department: 2157)
Electrical computers and digital processing systems: multicomput
Computer-to-computer data addressing
C709S227000, C709S242000, C709S246000
Reexamination Certificate
active
06836805
ABSTRACT:
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
MICROFICHE APPENDIX
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is related to the field of communication networks, and in particular, to an access communication system that provides access to multiple service provider systems.
2. Description of the Prior Art
Communication networks have seen dramatic development over the past several years so that today, there are multiple diverse communication networks providing services. The current technical challenge is to develop interfaces between the networks to provide seamless service across multiple networks. Unfortunately, today's interfaces lack the ability to offer the user with easy access to services from multiple systems. These interfaces do not customize operations for the user.
FIG. 1
illustrates the conventional public telephone network. User telephones and computers are connected to local switches. The local switches are coupled to a local database. The user places calls through the local switch. The local switch processes the called number to provide an end-point connection or access to other networks. The local switch may connect the call to another telephone in the local calling area. In a Local Number Portability (LNP) situation, the local switch exchanges information with the local database to obtain the appropriate routing number for a ported call. The local switch may also connect the call to an Internet Service Provider. If a Digital Subscriber Line (DSL) is used, DSL equipment may be used to bypass the local switch. The local switch may also connect the call to a long distance switch. To provide access to the long distance switch, the local switch first exchanges information with the local database. The local database identifies the long distance network for either the user or the dialed number.
The long distance switch processes the called number to route the call to another system or network. Prior to routing, the long distance switch validates the call by checking the caller's number. The long distance switch may also exchange information with the long distance database to provide special call-handling. One example is a calling card call, where the long distance database validates an account number for billing the call. Another example is a toll-free call, where the long distance database processes external information customized by the called party to route the call. Toll-free routing information includes items such as time and date, caller location, and call center status. Many long distance calls are simply routed through the long distance network to another local network for call completion. Other calls are routed from the long distance network to a call center. Call centers offer a concentration of call-handling capabilities for operations, such as order entry, customer service, and promotions. Call centers include automatic call distribution equipment to route calls to the appropriate destination within the call center.
Both local and long distance networks exchange calls with mobile switches. The mobile switches are connected to base stations that communicate over the air with wireless telephones. When a mobile user places a call, the mobile switches exchanges information with a mobile database to validate the mobile caller. The call is then routed to another mobile caller, the telephone network, or to an ISP. When a mobile caller moves around, their wireless phone logs-in with the physically proximate mobile network, and that mobile network updates the mobile user's location in the mobile databases. When a call is placed to that mobile user, their home mobile switch obtains a routing number from the mobile databases to route the call to the mobile network currently in communication with the mobile user.
FIG. 2
illustrates a conventional data network that transfers packets of user data to a destination based on address information carried in the packets. Users are connected to Local Area Networks (LANs) that are connected to Wide Area Networks (WANs). A common LAN is an Ethernet system. A common WAN is an intranet. WANs are interconnected by data networks, such as IP, T1, frame relay, or Asynchronous Transfer Mode (ATM). WANs are connected to the Internet through ISPs. WANs are connected to the public telephone network through telephony gateways. A common telephony gateway is a Private Branch Exchange (PBX).
FIG. 3
illustrates a conventional ISP. The public telephone network is coupled to a telephony interface that converts between telephony analog and digital protocols and the Internet Protocol (IP). Some telephony interfaces also handle DSL traffic that may already use IP. The telephony interface transfers IP traffic through an access server and firewall to a router. Some ISPs combine the firewall and the access server into one system. Also, the position of the firewall may vary, and traffic shapers may be present. The router exchanges IP traffic with the Internet.
In operation, the user calls the ISP over the telephone network and logs-in at the access server. The access server collects and forwards the user name and password to the ISP database. The ISP database validates the user name and password and returns an IP address to the access server. The IP address is for the user's terminal connection. Using the IP address, the user may communicate through the firewall to the router for transmissions to an IP address. The user now has Internet access through the router and exchanges packets with various Internet servers.
IP addresses are referred to as network addresses and include a network ID and a host ID. Network IDs are unique across the Internet and host IDs are unique within a given network. IP addresses are lengthy numerical codes, so to simplify things for the user, service addresses are available that are easier to remember. The service addresses are often the name of the business followed by “.com”. Domain Name Service (DNS) is hosted by servers on the Internet and translate between service addresses and network addresses. The browser in the user computer accesses the DNS to obtain the desired network address.
FIG. 4
illustrates conventional network access. A current proposal for communication network access is provided by the Telecommunication Information Network Architecture Consortium (TINA-C). TINA-C proposes the use of agents in the user domain and the service provider domain. The service provider domain could be a telephone network, data network, or ISP. The agents negotiate access service rights. Once the service is negotiated, the user receives the service from the service provider network during a service session. Unfortunately, the access session occur between the user domain and a particular service provider domain. At present, the service provider domain provides limited access capability beyond simply handing off communications to another network based on a called number or network address. As a result, the ability to customize services for a particular user across multiple service providers is inadequate.
SUMMARY OF THE INVENTION
The inventions solve the above problems by providing access between a user system and a plurality of communication networks. The plurality of communication networks provide services to a user in the user system. An access communication system includes a database system and an access server that is connected to the user system and the plurality of communication networks.
In one aspect of the inventions for user access profile inheritance, the database system receives an update request from the access server to update a user access profile through inheritance. The database system then processes the update request to inherit user profile information from a user profile data structure. The database system updates the user access profile with the user profile information.
In another aspect of the inventions for network shells, the access server receives an alias selection from a user for a network shell that includes alias selections associ
Najjar Saleh
Sprint Communications Company L.P.
LandOfFree
Scheduled alias resolution does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Scheduled alias resolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scheduled alias resolution will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3334546