Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Two or more radiation-sensitive layers containing other than...
Reexamination Certificate
1999-12-27
2001-07-31
Letscher, Geraldine (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Radiation sensitive product
Two or more radiation-sensitive layers containing other than...
C430S505000, C430S502000, C430S503000, C430S543000, C430S558000, C430S567000, C430S605000, C430S604000, C430S523000, C430S531000, C430S533000, C430S512000
Reexamination Certificate
active
06268116
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to photographic silver halide media and, in particular, to a multilayer coating structure that provides improved keeping properties and more efficient use of silver for digital exposures.
BACKGROUND OF THE INVENTION
The continuing thrust towards digital printing of photographic color papers has created the need for a consumer color paper that can work in both a negative working optical and digital exposure equipment. In order for a color paper to correctly print, utilizing a color negative curve shape of the paper is critical. In a digital environment (direct writing) to a photographic paper, the curve shape to a degree can be electromodulated and thus have a greater degree of freedom than the color negative working system. Ideally, a color paper that could substantially maintain tone scale from conventional optical negative working exposure times to sub microsecond digital direct writing exposure times would be preferred. This would enable a photofinishing area to maintain one paper for both digital and optical exposure thereby reducing the need for expensive inventory.
Typical photographic color print media comprises a multilayer structure having three light sensitive silver halide image recording layers, as well as other non-light sensitive interlayers. The image recording layers typically comprise silver halide and a dye-forming coupler. During photographic processing the silver halide reacts with developer to form oxidized developer (Dox) that undergoes further reaction with coupler to produce image dye, preferably in the same image recording layer in which the Dox is formed. Because Dox can migrate to other layers in the structure, it is possible for it to react with the wrong coupler and form unwanted dye- The term “chemical cross talk” refers to the formation of unwanted dye caused by migration of oxidized developer from one image recording layer to another. One aspect of interimage in photographic paper relates to the propensity of chemical cross talk occurring during development. Papers with high interimage show degraded color reproduction and have a more restricted color gamut (range of accessible colors) relative to a paper having low interimage that produces the same image dyes. To control cross talk image recording layers are surrounded by non-light sensitive interlayers that contain reactive chemicals known in the trade as “scavengers”, organic compounds that convert oxidized developer back to developer, or a noncolored by-product before the oxidized developer can migrate to an adjacent color record and form unwanted dye.
Scavengers are typically organic reducing agents, including but not limited to, compounds known in the trade as hydroquinones and their derivatives.
A limitation of organic reducing agents as interlayer scavengers is their reactivity with image dye after photographic processing. Because scavengers are retained in the coating after photographic processing, conditions that promote diffusion of the scavenger into a dye-containing layer may lead to dye destruction due to reaction of the scavenger with the dye to form colorless by-products. Common surface treatments, such as embossing, promote the migration of scavengers into image layers by subjecting prints to localized high pressure (~5000 psi) and/or organic solvents.
Another limitation relates to the migration of scavenger into the dye-forming layers prior to photographic processing. In this case, the scavenger may compete for Dox with dye-forming coupler and cause less efficient dye formation, resulting in loss of desired density and/or contrast. In particular, dispersions of magenta dye-forming couplers derived from pyrazoletriazoles are susceptible to scavenger competition. Neutral flat fields that develop to a more green looking neutral at the slit edge of a coating illustrate this problem. The cutting knives may subject the coating to enough local stress to force the scavenger into the magenta dye forming layer, causing this layer to develop to a lower density on the edge of the coating.
Scavengers also interfere with the light stability of the image dyes either by direct reaction with the dye when exposed to light, or by reaction with other components such as UV dyes and chemical stabilizers that are coated with photographic couplers to protect the image dyes from exposure to light. Destruction of the UV dyes or stabilizers enhances the rate of fade of the image dye.
Scavengers also limit the inherent chemical efficiency of a photographic system because Dox is lost to reactions that produce no image dye. Raising the level of silver to compensate for the loss of Dox can lead to increased chemical cross talk and process sensitivity. More efficient conversion of Dox to image dye permits lower silver lay downs and shorter development times for a given density.
These problems have been described in detail in U.S. Pat. No. 5,736,303 which teaches the preferred ratio of gel to organic component in the coating layers to minimize scavenger migration. It would be more preferred, however, to substantially or completely eliminate the scavengers in the interlayers while retaining good color purity.
R. W. G. Hunt,
The Reproduction of Color in Photography, Printing and Television
, 4
th
Edition, Copyright 1987, Fountain Press, Chapter 8, Plate 10 describes the structure of conventional color paper and shows the interlayers separating the three dye forming image layers.
U.S. Pat. No. 5,576,159 describes a photographic element having a color enhancing layer in between an emulsion layer and an oxidized developer scavenger layer U.S. Pat. No. 4,040,829 describes a photographic structure where a semi-diffusible coupler layer is coated on top of the topmost emulsion layer.
European Patent Application No. 0 062 202 describes a structure in which the emulsion layers are sandwiched between two coupler containing layers.
Japanese Kokai Patent Application No. Sho 53[1978]-65730 teaches using an additional 0.01-0.3 g/m
2
of yellow coupler in the interlayer between the blue light sensitive layer and the green light sensitive layer.
East German Patent 285,206 A5, H. Odewski, et al., specifies a multilayer photographic structure for film in which interlayer scavenger is replaced by coupler.
PROBLEM TO BE SOLVED BY THE INVENTION
There is a need for color print media that have improved keeping properties and better utilize exposed silver in image formation.
SUMMARY OF THE INVENTION
It is an object of the invention to overcome disadvantages of prior inventions.
It is a further object to provide a photographic element with good digital exposure.
It is another object to provide print material with efficient use of exposed silver. These and other objects of the invention generally are accomplished by a multilayer photographic element comprising a reflective support wherein the color record 1 adjacent to the support comprises at least one light sensitive layer and a non-light sensitive dye-forming interlayer; and wherein color record 2 above said color record 1 comprises at least one light sensitive layer and at least two non-light sensitive dye-forming interlayers and wherein color record 3 comprises at least one light sensitive layer and a non-light sensitive dye-forming interlayer; an optional UV dye containing layer and a top overcoat; and wherein each interlayer is completely or substantially scavenger free, comprises silver halide grains comprising greater than 90% silver chloride, and wherein the reciprocity characteristics of the silver halide grains are such that for a separation exposure of 1 microsecond and 0.4 sec, at least one color record develops to a density of at least 2.0 within a log exposure range of 1.2 or less relative to the exposure point producing a density 0.04 above Dmin.
ADVANTAGEOUS EFFECT OF THE INVENTION
The invention provides an improved member for digital exposure with efficient use of silver and good keeping properties.
DETAILED DESCRIPTION OF THE INVENTION
The invention has numerous advantages over prior materials. The invention pr
Camp Alphonse D.
McSweeney Gary J.
Roberts Michael R.
Eastman Kodak Company
Leipold Paul A.
Letscher Geraldine
LandOfFree
Scavenger free photographic silver halide print media does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Scavenger free photographic silver halide print media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scavenger free photographic silver halide print media will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2556593