Scattering-reticle assemblies for electron-beam...

Radiation imagery chemistry: process – composition – or product th – Radiation modifying product or process of making – Radiation mask

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S296000, C430S942000

Reexamination Certificate

active

06620558

ABSTRACT:

TECHNICAL FIELD
This disclosure pertains to microlithography, which involves projection-transfer of a pattern, defined by a reticle or mask, to a “sensitive” substrate using an energy beam. By “sensitive” is meant that the substrate is imprintable with an image carried from the reticle to the substrate by the energy beam. More specifically, this disclosure pertains to reticles as used in microlithography in which the energy beam is an electron beam.
BACKGROUND
As noted above, in projection microlithography the pattern is defined on a reticle or mask (termed a “reticle” herein) and is projected onto the sensitive substrate. For electron-beam (EB) microlithography, various types of reticles have been devised, including “absorption” reticles and several types of “scattering” reticles.
Scattering reticles generally are of two types: “scattering-stencil” reticles and “scattering-membrane” reticles. A scattering-stencil reticle comprises an electron-beam-scattering (EB-scattering) membrane, usually made of silicon (Si), that defines pattern elements by corresponding EB-transmissive through-holes in the membrane. A scattering-membrane reticle comprises a thin EB-transmissive membrane, usually made of silicon nitride (SiN), on which pattern elements are defined by corresponding portions (“scattering bodies”) of a thin EB-scattering layer (e.g., tungsten (W) or chromium (Cr)) on the SiN membrane. An “absorption” reticle is constructed similarly to the scattering-membrane reticle, except that pattern elements are defined by corresponding “absorption bodies” of a EB-absorbing material (e.g., heavy metal) on a EB-transmissive membrane.
A scattering reticle is used in a different manner than an absorption reticle. With an absorption reticle, portions of the incident beam are absorbed by the EB-absorbing bodies, which can cause localized heating of the reticle. With a scattering reticle, in contrast, the incident electron beam is scattered (mostly forward-scattered) as it passes through various portions of the reticle, rather than being absorbed by the reticle. The resulting scattering contrast defines pattern elements as imaged on the substrate. Since few of the incident electrons are absorbed, the temperature of a scattering reticle can be kept relatively low compared to an absorption reticle, with a corresponding increase in the accuracy of pattern transfer.
With a scattering-stencil reticle, the incident electrons that pass through the through-holes of the reticle (and that do not interact with the reticle and become scattered, for example) are used for transfer and exposure. Hence, the full capacity of the EB-optical system can be used, with a corresponding increase in imaging resolution. A disadvantage of scattering-stencil reticles, however, is the fact that certain pattern elements (e.g., donut-shaped elements, peninsular-shaped elements, certain longitudinally extended elements) cannot be defined entirely in a single corresponding portion of the reticle. Rather, complete definition of such a pattern element on the reticle requires use of complementary portions of the reticle each defining a respective portion of the element. As exposed onto the substrate, the images of the complementary pattern portions must be “stitched” together properly to create the entire respective pattern element. The unusually high stitching accuracy required poses a problem with using this type of reticle.
Scattering-membrane reticles also have problems, notably the fact that some of the energy of the incident electrons passing through the thin EB-transmissive membrane is absorbed by the scattering bodies. This energy absorption not only increases the temperature of the reticle but also results in increased chromatic aberration of the electron beam propagating downstream of the reticle. I.e., the chromatic aberration arises from energy of the incident beam being absorbed by certain regions of the reticle relative to other regions.
SUMMARY
In view of the foregoing, an object of the invention is to provide, inter alia, scattering-reticle assemblies for use in electron-beam (EB) microlithography of a pattern, defined by the reticle assembly, to a substrate. An embodiment of such a reticle assembly comprises at least one scattering-stencil reticle portion defining a respective portion of the pattern, and at least one scattering-membrane reticle portion defining a respective portion of the pattern. Typically, the reticle assembly is of a “divided” reticle, wherein each of the scattering-stencil reticle and scattering-membrane reticle portions is segmented into respective subfields. Also, the reticle assembly desirably further comprises a support frame, wherein the at least one scattering-stencil reticle portion and the at least one scattering-membrane reticle portion are bonded to respective locations on the support frame.
Each scattering-stencil reticle portion typically comprises a respective reticle membrane made of silicon, wherein pattern elements are defined by respective through-holes in the reticle membrane. Each scattering-membrane reticle portion typically comprises a respective reticle membrane made of Si, SiC, SiN, carbon, diamond, BN, or a mixture thereof. Each scattering-membrane reticle portion typically further comprises a respective pattern-defining layer on the respective reticle membrane. The pattern-defining layer desirably is made of a material such as chromium (Cr), tungsten (W), tantalum (Ta), or a mixture thereof. Further desirably, each respective pattern-defining layer has a transmittance to electrons of an incident electron beam of no more than one-tenth of the respective reticle membrane.
The reticle assembly can comprise a first scattering-stencil reticle portion, a second scattering-stencil reticle portion, and a scattering-membrane reticle portion. In such a configuration, the second scattering-stencil reticle portion usually comprises subfields defining respective pattern features that are complementary to respective pattern features defined in subfields of the first scattering-stencil reticle portion.
Also provided are EB microlithography apparatus. An embodiment of such an apparatus includes an illumination system, a projection system, and a scattering-reticle assembly. The illumination system is situated and configured to receive an illumination beam from an EB source and to direct the illumination beam to a selected region on the reticle assembly. The projection system is situated and configured to direct a portion of the beam passing through the reticle assembly to a substrate. The scattering-reticle assembly is situated on a reticle stage so as to be illuminated by the illumination beam. The scattering-reticle assembly comprises at least one scattering-stencil reticle portion defining a respective portion of the pattern, and at least one scattering-membrane reticle portion defining a respective portion of the pattern. Each of the scattering-stencil reticle and scattering-membrane reticle portions of the reticle assembly can be configured as summarized above with respect to reticle assemblies.
Also provided are improvements to EB microlithographic exposure methods in which an electron beam is directed to a reticle assembly (that defines a pattern) by which the beam acquires an ability to form an image of the pattern on a substrate. On the reticle assembly a first pattern portion is defined on at least one scattering-stencil reticle portion, and a second pattern portion is defined on at least one scattering-membrane reticle portion. Using the electron beam, the pattern portions from each reticle portion are transferred to the substrate so as to produce a stitched-together image of the pattern on the substrate.
Characteristic of a divided reticle assembly, each of the reticle portions typically is divided into respective subfields each defining a respective portion of the pattern. With such a reticle assembly, the step of transferring the pattern portions comprises exposing the subfields individually to respective locations on the substrate so as to stitch together images of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scattering-reticle assemblies for electron-beam... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scattering-reticle assemblies for electron-beam..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scattering-reticle assemblies for electron-beam... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3031685

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.