Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2002-10-16
2004-03-23
Imam, Ali M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
Reexamination Certificate
active
06709397
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
FIELD OF THE INVENTION
This invention relates to ultrasonic medical imaging systems, and more particularly pertains to probes and scanning devices used in combination and in conjunction with ultrasonic medical imaging equipment, to provide a better focusing upon the potential site of disease at particular locations in the body, and more specifically the prostate, and in addition, provides a means for guiding the insertion and implantation of the biopsy needle or other treatment devices into a precise location, during medical treatment.
BACKGROUND OF THE INVENTION
Ultrasound has become an important diagnostic tool for the medical professionals. Generally, ultrasound scanning means can be categorized as either a “cavital” imaging device, or a “body” imaging device. The cavital imaging devices, often referred to as “probes”, are usually of the type that are inserted into a cavity of the patient to image organs therein or those arranged juxtapose or adjacent to the cavity, to provide for a precise picture of the surrounding area. Cavital probes are often specifically designed for the configuration of the cavity to be imaged. Cavital probes include the type that provide transrectal imagining, such as for use for the detection of prostate cancer, and rectal cancer, in addition to transvaginal probes. In addition, transesophagual probes also provide for imaging.
Ultrasound works by using a transducer to generate a narrow pulse of sound, which travels through the surrounding tissue. The pulse of sound is then reflected back to and captured by the transducer, with the density and distance of tissue affecting how the signal is reflected. Currently two main types of transrectal cavital probes are in use: a bi-plane mechanical probe and a bi-plane solid-state probe. The standard mechanical probe contains one or more transducers that are mounted inside the hollow casing at the tip of the probe. The transducer(s) either pivot or rotate quickly within the tip (approximately five to ten times per second) to generate and receive pulses at multiple points. Depending upon the movement used, a pie-shaped cross sectional image generated either inline with the probe tip (longitudinally) or perpendicular thereto (transversely). This dual axes image capability is referred to as bi-plane imagining. The solid-state probe operates in a similar manner, except that the single transducer is replaced with inline columns of very small transducers. The transverse columns are wrapped around a small portion of the diameter of the probe and longitudinal columns runs approximately sixty millimeters along the length of the probe. Instead of pivoting a transducer, the multiple transducers of each column are sequentially pulsed to create a cross sectional image. Therefore, like the mechanical probe, the solid-state probe is able to generate dual axis, bi-plane images.
Ultrasound has become the primary method of imaging the prostate and is an integral component in a number of widely used prostate cancer treatment procedures. A rectally inserted ultrasound probe of either type, in conjunction with imaging software, allows the doctor to display a two dimensional image of the prostate on the longitudinal plane, and a two dimensional image on the transverse plane. The doctor can view these images to evaluate the prostate for cancer, and if necessary prescribe a treatment regimen. Both types of current probes must be mounted on a large stand, referred to as a “stepper and stabilizer”. The stepper and stabilizer are used to maintain the stability of the probe within the rectum and also allow it to be precisely moved in and out and to be rotated by the use of hand operated controls. The in and out movement is typically performed in five millimeter increments to facilitate the collection of eight to ten 2D transverse images that a computer then assembles to create a rough 3-dimensional approximation of the 3D volume of the prostate. The “free hand”/diagnostic rotational movement is used to view the prostate, needles and other treatment devices in the longitudinal mode. Conventional probes, in combination with the steppers, have multiple operational problems and limitations.
Further, a very popular treatment for prostate cancer is brachytherapy, in which a series of tiny radioactive seeds are embedded in the prostate in an attempt to destroy any present carcinoma. A rectally inserted ultrasound probe is used to guide the insertion of needles through the skin and into the prostate as part of this treatment. Regardless of the treatment option utilized, a transrectal ultrasound probe is needed to help diagnose, plan, and most often guide, the treatment procedure.
Existing probe designs suffer from a number of problems and deficiencies. Moving the probe in and out of the rectum or vagina can be extremely uncomfortable for the patient, and it also causes the prostate, needles, and radioactive seeds and other diagnostic and treatment devices to move, therefore constantly changing their position during diagnostic and the treatment methods. All of the probe movement is hand-initiated and powered by the physician. As a result, the process of taking the multiple images is extremely slow, increasing the length of the time the probe must be in the patient's rectum and further increasing the time the doctor spends on the procedure. Also, the readings and scans may be inaccurate due to the manual participation manually record location. Also standard steppers usual only move in large, five millimeter increments more or less, limiting the number of cross sections obtained and limiting the information available to the physician after the probe is removed from the patient. Further, because of the need to move the whole probe, the stepper must be very steady. Consequently, steppers are very large and expensive devices, substantially increasing the cost of an ultrasound treatment system. As such, the use of transrectal imaging has been limited and has not fully reached its potential as a preferred diagnostic tool.
Various prior art imaging systems have been available in the art, as can be seen from a number of publications. For example, the patent to Fenster, et al, U.S. Pat. No. 5,964,707, shows a 3-dimensional imaging system. While this particular 3-dimensional ultrasound imaging system may provide for an inputting of ultrasound signals from a transducer, it essentially utilizes the ultrasound probe to provide for linear scanning, wherein successive 2-dimensional images of the target volume are detected, and then digitized, to obtain other images. Another patent to Fenster, U.S. Pat. No. 5,842,473, also upon a 3-dimensional imaging system, operates on the same principle.
The patent to Wilson, U.S. Pat. No. 5,611,343, discloses a high resolution 3-dimensional ultrasound imaging system. It provides ultrasound imaging for generating high resolution, 3-dimensional images of the body for medical imaging purposes. The system includes a housing and a rotatable disc, at one end of its probe, to obtain its ultrasound images.
The patent to Herries, U.S. Pat. No. 5,070,879, shows another ultrasound imaging method and apparatus.
The patent to Frazien, U.S. Pat. No. 5,394,878, discloses a method for 2-dimensional real time color Doppler ultrasound imaging of bodily structures through the gastrointestinal wall.
The United States patent to Wollschlager, et al, U.S. Pat. No. 5,105,819, shows an ultrasound endoscope device.
The patent to Saito, et al, U.S. Pat. No. 5,054,491, shows another ultrasonic endoscope apparatus.
The United States patent to Keen, et al, U.S. Pat. No. 5,931,788, discloses the method and apparatus for imaging internal organs and vascular structures through the gastrointestinal wall.
The patent to Hossack, U.S. Pat. No. 5,769,079, discloses the method and apparatus for determining quantitative measures of flow parameters.
The United States patent to Oaks, et al, U.S. Pat. No. 5,050,610, explains the transesophageal ultrasonic scan head.
The United States
Denk Paul M.
Envisioneering, L.L.C.
Imam Ali M.
LandOfFree
Scanning probe does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Scanning probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scanning probe will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3227744