Scanning optical microscope

Optical: systems and elements – Compound lens system – Microscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S389000, C359S290000, C250S201900

Reexamination Certificate

active

06751016

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention The present invention relates to scanning optical microscopes and, more particularly, to a laser scanning microscope (LSM) that performs focal point movement along the direction of the optical axis by using a wavefront converting element.
2. Discussion of Related Art
It has heretofore been necessary in order to obtain a three-dimensional image of a specimen with an LSM, for example, to capture optical images of successive planes inside the specimen by mechanically moving either the specimen or the objective along the direction of the optical axis. With this method, however, it is difficult to realize positional control with high accuracy and high reproducibility because the method needs a mechanical drive. In a case where the specimen is moved, high-speed scanning cannot be effected when the size of the specimen is large.
In observation of a biological specimen, if the objective is-scanned in the state of being in direct contact with the specimen or immersed in a culture solution of the specimen, vibrations of the objective adversely affect the specimen under observation.
To solve the above-described problems, Japanese Patent Application Unexamined Publication (KOKAI) No. Hei 11-101942 discloses an adaptive optical apparatus. The apparatus is a microscope having an optical element (wavefront converting element) capable of changing power. The arrangement of the microscope is shown in
FIGS. 27 and 28
. In this prior art, a wavefront converting element is inserted in either or both of a viewing optical path and an illuminating optical path to change the focal length of the optical system and to correct aberration due to the change of the focal length by using the wavefront converting element. With this arrangement, it is possible not only to form and move a focal point in the object space without changing the distance between the objective and the specimen but also to correct aberration.
In the above-described prior art, it is preferable to place the wavefront converting element in the pupil plane of the objective or at a position conjugate to the pupil plane from the viewpoint of allowing the wavefront converting element to effectively perform its functions of moving the focal point in the object space and making aberration correction. If the wavefront converting element is not conjugate to the pupil plane, illuminating light or image-forming light will pass at different positions on the wavefront converting element according to the height of the object detected by the objective. To perform focal point movement or aberration correction, the wavefront shape has to be changed according to the object height. If the wavefront shape cannot properly be changed, image quality is likely to degrade considerably in an area where the object height is high.
If the wavefront converting element is changed into an optimum shape in accordance with a change in the object height, even if the wavefront converting element is not conjugate to the pupil plane, it is possible to avoid image quality degradation in an area where the object height is high. To realize this, however, the wavefront converting element needs to be controlled at high speed so as to provide an optimum rotationally asymmetric configuration. This is extremely difficult.
For the reasons stated above, it is desirable that the wavefront converting element should be placed at a position conjugate to the pupil. This is, however, difficult to implement because of the following problems.
A variety of objectives are used in microscopic observation, and the pupil position differs for each objective. Therefore, when a plurality of objectives are switched from one to another to perform observation, it is difficult to keep the pupils of the objectives in conjugate relation to the wavefront converting element at all times.
Further, the wavefront convening element needs to be placed in conjugate relation to the position of a laser scanning member and also to the position of the objective pupil. Accordingly, at least two pupil relay optical systems are required. Therefore, the size of the apparatus becomes large and it becomes unfavorably complicated.
Further, in the above-described prior art, a reflection type wavefront convening element is incorporated in the illuminating optical path and/or the light-detecting optical path. Therefore, the prior art uses beam splitters as shown in
FIGS. 27 and 28
. Accordingly, when a non-polarized laser is used as a light source, together with a non-polarization type beam splitter, the amount of light is reduced to ¼ every time the laser beam travels via the wavefront converting element.
More specifically, the amount of light is reduced to ¼in the process of illumination and also reduced to ¼in the process of detection. That is, the amount of light is reduced to {fraction (1/16)}in total. If a linearly polarized laser is used as a light source, together with a polarization beam splitter and a quarter-wave plate, the loss of light in the process of illumination can be prevented. However, in observation of fluorescence in a non-polarized state, the amount of light is reduced to ½in the process of (fluorescence) detection.
Further, even when a polarization beam splitter and a quarter-wave plate are used as stated above, it is not always possible to use a linearly polarized laser as a light source. If a non-polarized laser is used to observe fluorescence, the amount of light is reduced to ½in the process of illumination and also reduced to ½in the process of detection. That is, the amount of light is reduced to ¼in total.
SUMMARY OF THE INVENTION
The present invention was made to solve the above-described problems associated with the prior art. Objects of the present invention are as follows. A first object of the present invention is to provide a scanning optical microscope, e.g. a laser scanning microscope (LSM), using a wavefront converting element, wherein even when the object pupil and the wavefront converting element are not placed in conjugate relation to each other, off-axis performance degradation is minimized, and wherein the wavefront converting element can be controlled by an extremely simple method, and a pupil relay optical system is simple in arrangement or unnecessary. A second object of the present invention is to provide an LSM using a wavefront converting element, in which the loss of light can be prevented even when the wavefront converting element is of the reflection type.
To attain the above-described objects, the present invention provides a first scanning optical microscope including a light source and a wavefront converting element for applying a desired wavefront conversion to illuminating light emitted from the light source. An objective collects wavefront-converted illuminating light emerging from the wavefront converting element onto a sample. A detector detects signal light emitted from the sample. An actuator scans the objective along a direction perpendicular to the optical axis.
It is desirable that illuminating light emerging from the wavefront converting element should be an approximately parallel beam.
In addition, the present invention provides a second scanning optical microscope wherein when the above-described actuator scans one section of the sample perpendicular to the optical axis with the objective, the wavefront converting element applies a constant wavefront conversion to the illuminating light.
In addition, the present invention provides a third scanning optical microscope having an arrangement similar to that of the first or second scanning optical microscope, wherein when the amount of movement of the objective along the direction perpendicular to the optical axis (this will hereinafter be referred to as “scan range”) is denoted by &Dgr;X, the following condition (1) is satisfied:
&Dgr;X≦
0.66f
OR
·&lgr;(&Dgr;X·NA
4
)   (1)
where:
f
OB
: the focal length of the objective;
&Dgr;Z: the amount of focal point movement caused by the wavefront convert

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scanning optical microscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scanning optical microscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scanning optical microscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3307182

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.