Scanning exposure method

Photocopying – Projection printing and copying cameras – Step and repeat

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C355S051000, C355S077000

Reissue Patent

active

RE038176

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a scanning-type exposure apparatus for scanning a mask (or a reticle) and a substrate synchronously to transfer a pattern of the mask to the substrate in a photolithography process for manufacturing, e.g., a semiconductor, a liquid crystal display device or a thin film magnetic head and more particularly to an exposure apparatus of a step-and-scan system for transferring a pattern of a mask to each of a plurality of shot areas on a substrate successively on a scanning exposure system.
2. Related Background Art
In a photolithography process for manufacturing a semi-conductor or the like, a projection-type exposure apparatus is utilized in which the image of a pattern on a mask or a reticle (hereinafter referred to as the reticle) is transferred via a projection optical system to a photosensitive substrate (a wafer or glass plate with photoresist applied thereto). Recently, the sizes of semiconductors tend to be large and in projection-type exposure apparatuses, it is required to transfer a much larger pattern on a reticle to a photosensitive substrate.
Then, for example, scanning-type exposure apparatuses have been developed in which a reticle and a wafer are scanned synchronously with respect to a rectangular, circular arc or hexagonal illumination area (hereinafter referred to as the slit-like illumination area) to transfer a pattern larger than the slit-like illumination area to the wafer. Such apparatuses are disclosed in e.g. U.S. Pat. Nos. 4,747,678, 4,924,257, 5,194,893, 5,281,996, 5,227,839 and 5,255,051.
Particularly, in scanning and exposing a pattern on a reticle to each of a plurality of shot areas on a wafer, after an exposure for the first shot area has been completed, the stepping of the wafer is carried out so as to position the following shot area to a scanning start position. This system of repeating the stepping and the scanning exposure is called a step-and-scan system. The system of scanning the reticle and the wafer synchronously so as to transfer the pattern of the reticle to the wafer including the step-and-scan system is called “the scanning exposure system” hereinafter.
There are reticles in which each pattern area has a plurality of identical (or different) chip patterns. In this case, when carrying out scanning exposure by means of a stepper adopting a batch exposure processing system, the image of the whole patterns on such a reticle is projected even to each of shot areas located in the periphery of the wafer to which only a portion of the plurality of patterns can be projected (hereinafter referred to as the incomplete shot areas).
When transferring a plurality of chip patterns on a reticle to each of incomplete shot areas on a wafer on the scanning exposure system, the reticle and the wafer are scanned for length (the length of the full field) the same as when the whole chip patterns on the reticle are transferred to the wafer. Therefore, unnecessary portions of the incomplete shot areas (e.g., the peripheral end portion of the wafer) are exposed also. Therefore, time is wasted for scanning the unnecessary portions, which causes the exposure time per shot to become long. As a result, the throughput is lowered.
SUMMARY OF THE INVENTION
It is an object of the present invention to provided a scanning-type exposure apparatus in which when using a plurality of circuit patterns (chip patterns) arranged along a scanning direction or a non-scanning direction perpendicular to the scanning direction and exposing a plurality of shot areas on a photosensitive substrate on a step-and-scan system, the total time for moving the mask and/or performing the stepping of the substrate other than the time for exposing effective areas of the shot areas on the substrate is shortened to improve the throughput of the exposure process.
The present invention concerns on exposure method in which a mask stage for holding a mask and moving it in a first direction and a substrate stage for positioning a photosensitive substrate two-dimensionally and moving it in a direction corresponding to the first direction are used, and the pattern of the mask is transferred to each of a plurality of shot areas by positioning each of the shot areas to a scanning start position by a stepping operation of the substrate stage, and scanning the mask and the substrate synchronously by driving the mask stage and the substrate stage.
In the first method of the present invention, when exposing and scanning, with a mask having a plurality of circuit patterns arranged in a first direction, among a plurality of shot areas on a substrate, an incomplete shot area in the peripheral portion of the substrate to which one or several of the plurality of circuit patterns on the mask can be transferred, the mask and the incomplete shot area on the substrate are moved to respective scanning start positions by driving the mask stage and the substrate stage, and in synchronism with moving the mask by means of the mask stage along the first direction for a distance corresponding to the total width of the one or several of the plurality of circuit patterns to be transferred to the incomplete shot area, the substrate is moved by the substrate stage along a second direction for a distance corresponding to the total width of the image of the one or several of the plurality of circuit patterns to be transferred to the incomplete shot area. Also, after the scanning exposure, the mask stage is driven at a permissible highest speed to set the mask to the following scanning start position, and the substrate stage is driven to set a shot area on the substrate to be exposed next to a scanning start position.
It is preferable to provide, in an illumination optical system for emitting light to the mask, a variable field stop for varying the shape and/or the size of an illumination area on the mask. By changing the shape and/or the size of the illumination area by the use of the variable field stop during the scanning exposure, only the one or several of the plurality of circuit patterns to be transferred to the incomplete shot area is illuminated with light from the illumination optical system. That is, the circuit patterns other than the one or several circuit patterns are made not to enter the illumination area.
In the second method of the present invention, when scanning and exposing an incomplete shot area on a substrate with a mask having a plurality of identical circuit patterns along a second direction perpendicular to a first direction, the mask and the substrate are scanned synchronously by driving the mask stage and the substrate state after the incomplete shot area is overlapped with the image of the plurality of circuit patterns in the second direction for the total width of the image of the one or several of the plurality of circuit patterns on the mask, and the patterns other than the one or the several patterns are covered.
According to the first method of the present invention, for example, as shown in
FIG. 2
, the pattern area of a mask (R) is divided into, e.g., three sub-pattern areas (PA
1
to PA
3
) along a first direction (scanning direction), and the same or different chip patterns are formed on the respective sub-pattern areas. As shown, for example, in
FIG. 6
, in a shot area (SA
6
) in the peripheral portion of a wafer (W), only one of the three chip patterns on the mask (R) can be transferred. Also, in an adjacent shot area (SA
7
) to be exposed next, only two chip patterns can be transferred. That is, those shot areas (SA
6
, SA
7
) are incomplete shot areas.
Only the chip pattern of one sub-pattern area (PA
3
) on the mask (R) is exposed to the incomplete shot area (SA
6
) on the substrate (W). Therefore, in
FIG. 2
, in synchronism with scanning the sub-pattern area (PA
3
) with respect to an illumination area (
21
), one-third of the shot area (SA
6
) on the substrate (W) is scanned with respect to an area corresponding to the illumination area (
21
) in a direction opposite to a locus (T
6
). Thereafter, t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scanning exposure method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scanning exposure method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scanning exposure method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.