Scale monitor

Radiant energy – Geological testing or irradiation – Well testing apparatus and methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S072000

Reexamination Certificate

active

06777669

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a device and a method for monitoring scale, and particularly scale in a hydrocarbon well flow system.
BACKGROUND OF THE INVENTION
The formation of scale is a well-known problem in the oil and gas industry. Scales can develop when (relatively high) formation fluid temperatures and pressures are reduced during fluid extraction, the temperature and pressure reduction encouraging the precipitation from solution of scale-forming species. The scale deposits can cause undesirable constrictions or blockages in well production tubing and in the well formations themselves.
Particularly problematic scale deposits are those containing barium salts, generally observed as BaSO
4
. These are much more difficult to remove than, for example, calcium carbonate scale. Thus it is desirable to be able to detect the build-up of barium scale as early as possible.
In addition to barium, formation water generally contains naturally occurring radium in solution leached from the formation. Different isotopic species of radium may be present in the formation as members of both the uranium (see
FIG. 1
) and thorium (see
FIG. 2
) radioactive decay series. As a relatively soluble member of the decay chains, radium is taken into solution in formation water and carried into the borehole. Because radium and barium chemistries are very similar, radium is co-precipitated when barite scale is deposited.
Therefore, scales often contain radioactive material. This means that contaminated completion equipment must be dealt with and disposed of according to radiation safety legislation. However, forewarning of scale deposition, and analysis of the properties of the deposit formed, allows appropriate prevention or removal strategies to be adopted and radiation safety procedures to be planned effectively.
U.S. Pat. No. 6,037,585 describes a method of locating downhole scale and determining the flux of gamma-rays emitted therefrom. This information is then used to correct downhole gamma-ray measurements so that activity due to artificially introduced tracer isotopes can be identified. The method uses wireline logging equipment incorporating a spectroscopic gamma-ray tool.
U.S. Pat. No. 5,038,033 describes another method of detecting downhole radioactive deposits and determining the level of radioactivity using wireline logging equipment.
U.S. Pat. No. 4,856,584 relates to a method of inhibiting scale formation in which a gamma-ray detector is used to monitor scale build up.
SUMMARY OF THE INVENTION
The present invention is at least partly based on the realisation that, because the radium isotopes in scale decay into characteristic sequences of daughter products, useful information concerning scale formation can be obtained by determining the abundances of radioactive isotopes in the scale. In particular, one of the daughter products of radium is radon which, being a gas, can escape from some types of scale and therefore have a significant effect on the decay sequences. Also the ratio of
228
Ra to
226
Ra significantly affects the character of the scale activity.
In the following, we understand “abundance” to be either relative abundance or absolute abundance. In practice relative abundancy values are generally easier to obtain, and in most of the aspects of the invention discussed below relative abundancy values are as acceptable as absolute values. However, where absolute values are desirable this is mentioned.
Also in the following, by a “gamma-ray spectrum” we mean a measure of the relative intensities or count rates of gamma-rays in a plurality of respective gamma-ray energy ranges. Preferably the spectrum has at least three, and more preferably at least five, discrete ranges. Clearly the more ranges there are in the spectrum, the more spectroscopic detail is revealable. In practice, however, the number of ranges is limited by e.g. the need to provide a robust detector and the need to provide sufficient data channels from the detector.
In a first aspect, the present invention provides a method of analysing scale at a location in a hydrocarbon well flow system, comprising the steps of:
(a) using an in situ gamma-ray detector to obtain a gamma-ray spectrum from the scale, and
(b) spectroscopically analysing the spectrum to determine the abundances of radioactive isotopes in the scale.
Preferably, the method further comprises the step of:
(c) repeating steps (a) to (b) to monitor the development of the scale.
Because the abundances are related to the amount and manner of deposition of the scale, determining the abundances and monitoring the development of the scale can provide useful information about the formation of the scale and the behaviour of the environment in which the scale is forming. For example, the relative abundances can be indicative of the chemistry of the fluid from which the scale deposits, and a change in the relative abundances may indicate a change in the chemistry of that fluid. So, if the scale deposits from production water, a change in the relative abundances may indicate an alteration in the relative amounts of sea and formation water in the production water.
Also obtaining the spectrum in situ, and repeating steps (a) and (b) allows continuous observation of the scale. The early stages of scale deposition can then be observed so that appropriate remedial action (e.g. use of scale dissolvers or inhibitors) can be taken before the scale thickens and becomes less responsive to such action. In contrast, conventional wireline logging techniques make only a single measurement of scale radioactivity as the logging tool passes along the well production tubing, so that continuous monitoring is not possible and the early stages of scale deposition are easily missed.
The method may further comprise the step of:
(d) using the abundances to determine the specific activity of the scale. An advantage of determining the specific activity in this way is that it is possible to compensate appropriately for e.g. different scale
228
Ra to
226
Ra ratios and the escape of radon from the scale. In contrast, if a conventional determination were made on the basis of only a total count rate (without compensation for e.g. the
228
Ra to
226
Ra ratio and radon loss), the specific activity could in some cases be over-estimated by more than an order of magnitude.
This can be significant because specific activity determinations are often used to help decide whether e.g. special radiation protection measures need to be adopted for the protection of personnel, and the disposal and/or decontamination of contaminated equipment. Such measures are generally costly and inconvenient, and so they are usually adopted only when necessary. Thus it is clearly desirable to have available the most accurate data possible. The method may further comprise the step of:
(e) using the abundances to determine the permeability of the scale. This makes use of the principle that the abundances are related to the proportion of radon which escapes from the scale, and the proportion of escaped radon is in turn related to the permeability and deposition rate of the scale.
Because different types of scale have characteristic permeabilities, this embodiment of the method can provide information about the type of scale which is being formed. An operator might then be in a better position e.g. to select an appropriate form of scale treatment.
The method may further comprise the step of:
(f) using the abundances to determine the amount of radium originally deposited in the scale, and
(g) deriving the quantity of scale from the amount of radium and from the relative concentrations of radium and the other scale components in the fluid from which the scale deposits. In this embodiment of the method more accurate determinations of the quantity of scale are generally obtained if, to the extent that is possible, absolute abundancies are determined at step (b).
Based on the amount of radium originally deposited in the scale, and the relative concentrations of radium and the other scale components (parti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scale monitor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scale monitor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scale monitor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3309723

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.