Scalable wireless network topology systems and methods

Telecommunications – Carrier wave repeater or relay system – Portable or mobile repeater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S011100, C455S428000, C455S429000, C455S446000

Reexamination Certificate

active

06728514

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to communication systems and, more particularly, to wireless broadband communication networks and methods for data transmission and reception.
2. Related Art
There is an increasing demand for interconnecting a plurality of remote locations spread over a large geographic area to provide broadband data communication services to those locations. The objective of many of these types of systems is to transfer large amounts of data, voice, or video between the various remote locations and a central location, which provides a gateway to a larger network, such as, for example, the Internet. Alternatively, for example, many of these types of systems can be used for private networks where the end-to-end transfer of data takes place between any of the two remote locations.
Current solutions for such networks include both wired and wireless approaches. If a wired network does not already exist or is otherwise inadequate to provide the required broadband service, then a wireless approach has many advantages. In general, wireless solutions are easier and quicker to install and, therefore, are significantly less expensive.
As an example, one wireless network solution to the problem provides point-to-point wireless connectivity to all the remote locations. This approach requires many locations to be equipped with multiple transceivers, each one connected to a different directional antenna. At those sites, a router or multiplexer may also be required to provide switching capability between the several point-to-point links. This approach is both costly and under utilizes the radio frequency (RF) bandwidth. Data applications are characterized by sudden bursts of high-speed communications followed by long idle times. The point-to-point links therefore need to be designed to support the high data rate required for the burst, but will otherwise be idle at other times.
Another wireless access solution, for example, is based on a point-to-multipoint topology consisting of a central base station with the capability of handling communications with a plurality of subscriber stations. These point-to-multipoint systems use various medium access mechanisms to coordinate how the subscribers are all served by a single base station. These may include Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), and Code Division Multiple Access (CDMA). The base station, having direct access to all the subscribers, provides centralized control to perform bandwidth sharing and allocation between the subscribers.
The geographic coverage of a single point-to-multipoint system is limited by the range of the radio equipment and line-of-sight (LOS) limitations. When the required geographic coverage exceeds the RF range of the equipment, these systems require multiple neighboring base stations, each at the center of a “cell.” Within each cell, subscriber stations communicate with the base station that is nearest to them. The cells are ideally distributed on a honeycomb grid with the base stations at the center of each hexagon.
Deployment of cell-based systems generally encounter many difficulties. For example, traffic is concentrated at the various base stations, but still needs to be carried to a single central point through an additional backbone network. This backbone needs to be deployed with the maximum capacity envisioned, even though, at the early stages of deployment, it will be greatly underutilized. This represents an up-front expense before the service comes online.
Additionally, topographical features will shadow or block areas resulting in inadequate or a total loss of coverage. Studies have shown that in a cell-based system, up to thirty percent of potential subscribers may not be reached due to LOS limitations. This percentage can be reduced using mini-cells to cover some dark areas (i.e., uncovered areas); however, the additional base stations and the associated backbone connections add to the cost and complexity of the cell-based system.
A third wireless access solution, for example, is based on a multipoint-to-multipoint or mesh topology. In this approach, each station is equipped with an omnidirectional antenna and must be within RF reach of other stations in the network. The transceivers transmit to and receive from their direct neighbors and forward packets to their various destinations using any one of many possible routes. This approach does not require a backbone and can easily reach hidden locations through multiple hops.
The multipoint-to-multipoint approach, however, has many drawbacks. For example, to establish connectivity to more than one neighbor, the radio antenna will typically be an omnidirectional or sector antenna (as opposed to the directional antenna used by the subscriber stations in a point-to-multipoint system). This reduces the link distance that can be achieved between any two points and exposes the receiver to noise and interference from all directions.
Another drawback is that each radio station may have a large number of neighbors that can be reached with one hop. This is indeed the advantage of the mesh network—provide multiple alternate routes between any two points. However, the transmissions from any given radio will reach not only the intended receiver, but also all of the neighboring receivers. Thus, the number of possible simultaneous transmissions by neighboring radios must be greatly reduced in order to avoid collisions.
An additional drawback is that, due to the possibility of collisions (as discussed above), all of the radio stations need to coordinate their transmission times with neighboring radio stations without the help of a central site. This must be done with over-the-air messages, which further reduces the airtime available for actual data transmissions.
As a result, there is a need for a wireless communication network system and method that overcomes some of the limitations of the prior art, such as, for example, those discussed for a cell-based point-to-multipoint system or for a mesh multipoint-to-multipoint topology.
BRIEF SUMMARY OF THE INVENTION
In accordance with some embodiments of the present invention, scalable network topologies and access methods (e.g., medium access control) using frequency, time, and directional diversity are provided. Wireless broadband data access is provided to and from a plurality of locations distributed randomly over a large geographic area. Various network topologies and access methods are provided, which allow numerous transmitting instruments to co-exist without loss of the communication link or information (e.g., data packets) due to collisions or conflicts within the network or system.
Embodiments of the present invention may include, for example, an apparatus and method that facilitates the deployment of a RF wireless network having many advantageous characteristics. As an example, the network can be deployed one node at a time without requiring base stations. A new node can become part of an existing network by simply being placed within RF reach of any other node already in the network. In addition, once the new node is part of the network, the new node can become the attaching point for other new nodes.
Furthermore, in accordance with some embodiments of the present invention, network nodes only require two independent communication channels and may combine the use of frequency and directional diversity to allow multiple nodes to transmit simultaneously in the same geographical area without collisions. The network does not require a backbone to be deployed, with all traffic capable of being forwarded by the wireless apparatus, through multiple hops, if necessary, to reach its intended destination. Backbone point-to-point links can be added at a later time to scale-up the network, if desired, but are not needed until the total available capacity has been utilized. An additional advantage is that the apparatus deployed at each subscriber location, for example, may be identical for all locations (e.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scalable wireless network topology systems and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scalable wireless network topology systems and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scalable wireless network topology systems and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3237930

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.