Fire escape – ladder – or scaffold – Self-sustaining – Connector for horizontal or diagonal brace
Reexamination Certificate
2000-12-22
2004-04-20
Lev, Bruce A. (Department: 3634)
Fire escape, ladder, or scaffold
Self-sustaining
Connector for horizontal or diagonal brace
C182S178500, C182S179100, C182S186800, C403S049000
Reexamination Certificate
active
06722471
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of construction scaffolding, and in particular to a system of scaffolding incorporating a set of features designed to improve both the functionality of the scaffolding and the safety characteristics thereof.
BACKGROUND OF THE INVENTION
In various applications, scaffolding is erected in order to give workers access to elevations above ground. For example, in the course of repairs to the outside surface of a building, modifications of the same, window washing, painting, cleaning, or installation of siding on the exterior of a building, scaffolding is commonly used to enable workers to move up and down adjacent the side of the building. Such devices are well known and take a wide variety of forms. One of the more conventional forms of scaffolding ordinarily includes one or more vertical posts that are interconnected by cross-braces and which may be stacked on top of each other to permit workmen to work at high elevations.
The scaffold platform typically includes a pair of metal side rails held in parallel spaced relation by a series of spaced transverse hollow rungs upon which metal or wooden planks are placed and secured to provide the floor of a work platform. These rungs may be round, or may have a square cross-section to provide flat upper surfaces upon which the wooden planks may rest and be supported. In order to provide workers access to multiple levels of the scaffolding, most scaffold installations incorporate ladders either integrally as part of the scaffold structure, or mounted to the scaffold structure by some form of attachment means.
Traditional scaffolding has been designed to provide workers with ready access to the surface of a flat wall, or to a right-angle corner of a building. Such scaffolding is useful for more traditional rectangular buildings, but such scaffolding has less utility in conjunction with structures having unconventional shapes. For example, round storage tanks present a unique and potentially dangerous problem for conventional scaffolding systems. Linear sections of conventional scaffolding must be brought together using independent clamps to conform to the surface of the tank. Conventional scaffolding is not designed for curved structures, hence, the clamped joints may become loose and create hazardous conditions for workmen.
Other hazards associated with scaffolds are well known. These hazards include loss of balance, slippage, and displacement of the scaffold due to movement of workers on the scaffold, wind, or other environmental factors. In order to protect the workers against falls, safety structures including guardrails and guard walls are often erected from the scaffold platform on one or both sides of the work platform. It is important that such safety structures be easy to assemble and attach to the platform and yet be firmly held in place with a minimum risk of failure.
One of the more popular scaffold construction designs includes a set of vertical columns having dual hemispherical couplers at regular intervals along their lengths. The vertical columns are tied together with horizontal members spanning between the vertical columns. Each end of each horizontal member is designed to mate with one quadrant of a dual hemispherical coupler. With this design, a single coupler can receive up to four horizontal members.
Although this scaffold design has proven to be useful, it has been found to be useful mostly for building scaffolds disposed against a single wall or against a right-angled structure. There has not been a satisfactory solution to the problem of scaffolding with this type of design against structures having diagonal or curved surfaces. Furthermore, although safety restraints and ladders have been developed that can be used in conjunction with this type of scaffolding, existing designs have been found to be heavy, difficult to assemble, or insufficiently compliant with government safety regulations.
SUMMARY OF THE INVENTION
The following summary of the invention is provided to facilitate an understanding of some of the innovative features unique to the present invention, and is not intended to be a full description. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
The present invention relates generally to the field of construction scaffolding, and in particular to a system of scaffolding incorporating a set of features designed to improve both the functionality of the scaffolding and the safety characteristics thereof. In its various embodiments, the present invention includes a number of novel structures and assemblies to facilitate safe and efficient assembly of scaffolding as well as improve the safety of workers using such scaffolding. In certain embodiments, the present invention facilitates the safe and efficient construction of scaffolding at the corner of structures where two walls meet at an angle greater or less than 90 degrees.
In one embodiment, the present invention includes a structural brace having a center section with a lengthwise axis, a first end, and a second end. A first mounting flange is attached rigidly to the first end, which includes a mounting surface having a center, an upper tab, and a lower tab. A second mounting flange is attached rigidly to the second end, and includes a mounting surface having a center, an upper tab, and a lower tab. The vector normal to the mounting surface at the center is disposed at an angle of between about 5 degrees and about 89 degrees to the lengthwise axis of the center section.
In another embodiment, the present invention also includes a guard rail panel including an upper brace section having a first end and a second end; a lower brace section having a first end and a second end, connected to the upper brace section by a bridging member. A first upper mounting flange, attached to the first end of the upper brace section, includes an upper tab and a lower tab. A second upper mounting flange, attached to the second end of the upper brace section, includes an upper tab and a lower tab. Finally, a first lower mounting flange, attached to the first end of the lower brace section, includes an upper tab and a lower tab and a second lower mounting flange is attached to the second end of the lower brace section, having an upper tab and a lower tab.
In yet another embodiment, the present invention is directed to a ladder assembly comprising a first vertical member, a second vertical member, one or more horizontal rungs connecting the first vertical member to the second vertical member, and one or more ladder mounting brackets. Each ladder mounting bracket has a first and second end, and is connected to a vertical member at the first end by a mounting clamp. The second end of each ladder mounting bracket has a mounting flange having an upper tab and a lower tab.
The novel features of the present invention will become apparent to those of skill in the art upon examination of the following detailed description of the invention or can be learned by practice of the present invention. It should be understood, however, that the detailed description of the invention and the specific examples presented, while indicating certain embodiments of the present invention, are provided for illustration purposes only because various changes and modifications within the spirit and scope of the invention will become apparent to those of skill in the art from the detailed description of the invention and claims that follow.
REFERENCES:
patent: D111651 (1938-10-01), Frost
patent: 2635717 (1953-04-01), Albrecht
patent: 2897013 (1959-07-01), Delp
patent: 3221837 (1965-12-01), Fisher
patent: 3409266 (1968-11-01), Jennings
patent: 3870124 (1975-03-01), Howard
patent: 3885648 (1975-05-01), Beziat
patent: 3902817 (1975-09-01), Meir
patent: 3955644 (1976-05-01), Steele
patent: 3978634 (1976-09-01), Mack et al.
patent: 4086979 (1978-05-01), Dunn
patent: 4122631 (1978-10-01), Batcheller
patent: 4273463 (1981-06-01),
Emanuelson Kenneth T.
Gardere Wynne & Sewell LLP
Lev Bruce A.
LandOfFree
Scaffolding system having improved safety structures and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Scaffolding system having improved safety structures and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scaffolding system having improved safety structures and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3219054