Communications: directive radio wave systems and devices (e.g. – Synthetic aperture radar
Reexamination Certificate
2001-10-19
2003-04-22
Sotomayor, John B. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Synthetic aperture radar
C342S02600R, C342S191000
Reexamination Certificate
active
06552678
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a satellite method and system that are simple, reliable, and effective in establishing a digital terrain model (DTM) of all or part of the globe at very high resolution.
2. Background of the Invention
The invention is based on using high resolution radar imaging which presents known advantages (all weather, absolute localization, . . . ) and the technique of interferometry which also presents well-known advantages (very high accuracy, ease of implementation) but which usually suffers from limitations that cannot be overcome: phase noise introduced by microwave propagation through the atmosphere and the ionosphere, loss of coherence on vegetation and on large items in relief.
The invention seeks to eliminate these limitations completely and make it possible to achieve horizontal and vertical resolution of smaller than 5 meters (m), e.g. 2 m horizontally and 0.5 m vertically, or even smaller.
These high resolutions, combined with absolute localization, open the way to advantageous applications in world map-making and in topography.
Satellite systems have already been proposed to use radar interferometry to establish a digital terrain model of all or part of the globe, such a system being constituted by two satellites flying in formation on two close orbits and provided with respective synthetic aperture radars, as described for example in the article “Interférométrie Radar: Principe, Applications et Limitations” [Radar interferometry: principles, applications, and limitations] by Frédéric Adragna (December 1977), and in the article “Mapping the world's topography using radar interferometry: the Topsar mission” by Howard A. Zebker et al., (IEEE Proceedings, Vol. 82, No. 12, December 1994).
SUMMARY OF THE INVENTION
The present invention seeks to define a satellite method and system using two satellites flying in formation, but not requiring any synchronization between the radar signals of the two satellites.
According to the invention, this is achieved by providing each satellite with a high resolution synthetic aperture radar, and causing the two satellites to orbit one behind the other so that their radars observe the same strip of ground independently of each other at an incidence of at least 40°, with a time interval between their respective observations of not more than 10 seconds, preferably of not more than 4 seconds and not less than 2 seconds.
The bottom limit of said time interval depends on the wavelength and the resolution of the radars.
Since the earth rotates during said time interval, there exists an (adjustable) lateral orbital offset.
This offset creates a small stereo effect which makes it possible to obtain the relief of the earth using the technique of interferometry.
The two satellites can advantageously include respective radar transceivers.
The two radars are preferably identical.
The angle of incidence of the observation is preferably set to an angle in the range 40° to 60°.
In a typical implementation, each imaging radar (on board a Proteus type platform) is simplified as much as possible: only one angle of incidence, an antenna which is fixed and passive and therefore light in weight (5 m×1 m, 50 kilograms (kg)), a single mode of operation, a simple form of sampling (BAQ2 coding: 2×2 bits per pixel), low power, but high resolution (2 m).
It is necessary to have good on-board memory capacity and an accurate navigation system (possibly self-contained), capable of monitoring orbital position (required accuracy: 50 m), and for fine playback of the orbit (necessary for absolute localization of the product).
The system is effective because the usual limitations of interferometry are eliminated:
the changes that normally take place on the ground are non-existent, except probably in the event of very heavy rain and windy days over a forest (which can be detected by loss of coherence);
the refractive index of the atmosphere does not vary during this very short time period, except under exceptional weather conditions (probability of less than 10 minutes per year); and
the high resolution (wide passband) combined with the high angle of incidence makes it possible to avoid problems of loss of coherence on mountainous zones (slopes).
The ambiguity altitude will depend on the spacing selected between the orbits, and can easily be modified over the lifetime of the system, as a function of requirements in terms of altitude measurement accuracy.
The invention presents advantages that are very great because:
very coherent interferograms of high resolution are obtained that can be converted automatically into elevation;
using acquisition in up orbits and in down orbits makes it possible to locate the final product absolutely in three dimensions without using external reference points (no operators).
Finally, the “coherence” of the interferogram serves to characterize the type of ground being observed (and to detect zones in which interferometric measurement is not reliable):
coherence =0: sea, lake, river (detecting coast lines, . . . );
coherence low: violent wind or various kinds of problem (DTM not reliable: invalidated);
coherence medium: (back-scattering in bulk) forests, . . . ;
coherence good: low density vegetation cover, cities, . . . ;
coherence =100%: bare earth or close-cropped vegetation.
In addition to the conventional strong points of radar interferometry (algorithmically easy to implement, measurement reliability, absolute localization without external reference points, etc. . . . ), the system of the invention presents the following advantages:
The high resolution makes it possible to measure the heights of buildings or isolated trees. If the ambiguity altitude is well chosen (80 m-100 m), there is no need to scroll through fringes.
3D measurements in urban environments would appear to be possible in spite of multiple reflections and geometrical folding.
It suffices to perform acquisition in “spotlight” mode (by rocking the platform backwards and forwards) to be in exactly the same configuration as the American airborne IFSARE system having resolution of 2×0.7 m.
The advantage over conventional stereo is that there is no geometrical deformation between the two images.
Pixels can be put immediately into correspondence and altitude is given by phase information only.
Finally, by filtering the interferogram, it is possible to distinguish vertical portions from horizontal portions.
REFERENCES:
patent: 4602257 (1986-07-01), Grisham
patent: 4727373 (1988-02-01), Hoover
patent: 4975704 (1990-12-01), Gabriel et al.
patent: 5332999 (1994-07-01), Prati et al.
patent: 5561837 (1996-10-01), Muller et al.
patent: 6384766 (2002-05-01), Ulander
“A weighted least squares solution for space intersection of spaceborne stereo SAR data”, Pu-Huai Chen; Dowman, I.J., Geoscience and Remote Sensing, IEEE Transactions on, Vol.: 39, Issue: 2, Feb. 2001, pp.: 233-240.*
“Engineering considerations pertaining to the use of GPS for single pass satellite SAR interferometer attitude measurement”, Malliot, H.A., Aerospace Conference, 1997. Proceedings., IEEE, vol.: 3, 1997, pp.: 103-119 vol. 3.*
“Accuracy of topographic maps derived from ERS-1 interferometric radar”, Zebker, H.A.; Werner, C.L.; Rosen, P.A.; Hensley, S Geoscience and Remote Sensing, IEEE Transactions on, vol.: 32, Issue: 4, Jul. 1994, pp.: 823-836.*
H.A. Zebker et al: Mapping The World's Topography Using Tadar Inerferometry: The Topsat Mission; Proceedings Of The IEEE, vol. 82, No. 12, Dec. 1, 1994, pp. 1774-1786, XP000492720; ISSN: 0018-9219.
A. Moccia et al: A Tethered Interferometric Synthetic Aperture Radar (SAR) For A Topographic Mission; IEEE Transactions On Geoscience and Remote Sensing, U.S. IEEE Inc. New York; vol. 30, No. 1; Jan. 1, 1992, pp. 103-109; XP000248539; ISSN: 0196-2892.
Centre National d'Etudes Spatiales
Lerner David Littenberg Krumholz & Mentlik LLP
Sotomayor John B.
LandOfFree
Satellite method for using radar interferometry to establish... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Satellite method for using radar interferometry to establish..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Satellite method for using radar interferometry to establish... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3045558