Salts of 8,9-dehydroestrone sulfate ester

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Cyclopentanohydrophenanthrene ring system doai

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C552S625000, C552S626000

Utility Patent

active

06169082

ABSTRACT:

BACKGROUND OF THE INVENTION
The use of naturally occurring estrogenic compositions of substantial purity and low toxicity such as Premarin® has become a preferred medical treatment for alleviating the symptoms of menopausal syndrome, osteoporosis/osteopenia in estrogen deficient women and in other hormone related disorders. The estrogenic components of the naturally occurring estrogenic compositions have been generally identified as sulfate esters of estrone, equilin, equilenin, &bgr;-estradiol, dihydroequilenin and &bgr;-dihydroequilenin (U.S. Pat. No. 2,834,712). The estrogenic compositions are usually buffered or stabilized with alkali metal salts of organic or inorganic acids at a substantially neutral pH of about 6.5 to 7.5. Urea has also been used as a stabilizer (U.S. Pat. No. 3,608,077). The incorporation of antioxidants to stabilize synthetic conjugated estrogens and the failure of pH control with Tris® to prevent hydrolysis is discussed in U.S. Pat. No. 4,154,820.
8,9-Dehydroestrone is a known compound useful as an intermediate in the synthetic production of estrone by isomerization to 9,11 unsaturation (U.S. Pat. No. 3,394,153) and as an intermediate in the production of 3-cyclopentyloxy-17-ethynyl derivatives (Example XXVIII, U.S. Pat. No. 3,649,621). In addition, 8,9-dehydroestrone is known to possess estrogenic activity and to lower blood lipid levels (Examples 11 and 12; U.S. Pat. No. 3,391,169).
DESCRIPTION OF THE INVENTION
In accordance with this invention there is provided a group of pharmaceutically acceptable salts of 8,9-dehydroestrone sulfate ester. The pharmaceutically acceptable salts of this invention are the alkali metal, alkaline earth metal, ammonium, alkylamine and dialkylamine salts of 8,9-dehydroestrone sulfate ester. The alkali metal salts are those which are free from other conjugated esters present in material found in natural sources of mixed esters. In addition, stabilized salts of 8,9-dehydroestrone sulfate ester in combination with tris(hydroxymethyl)aminomethane are provided, as well as the use of the 8,9-dehydroestrone-3-sulfate ester salts and 8,9-dehydroestrone itself in the treatment of cardiovascular diseases.
Furthermore, a process for the production of salts of 8,9-dehydroestrone sulfate esters and their stabilized compositions is provided which affords excellent product control. The process of this invention differs from methods generally involved in the sulfation of steroids which are carried out by treatment of the steroid with amine-sulfurtrioxide complexes followed by treatment with a cation exchange resin mediated by strong alkaline bases, preferably in hydroxylic solvents. Those reported methods for sulfation of steroids proved ineffective in the sulfation of 8,9-dehydroestrone. The process disclosed here relies upon the initial production of an alkali metal salt of 8,9-dehydroestrone followed by sulfation with trimethylamine-sulfurtrioxide under mild conditions in a polar, aprotic solvent such as tetrahydrofuran with simultaneous or subsequent addition of tris (hydroxymethyl)aminomethane as a stabilizer. The alkaline bases employed in the production of the initial intermediates of 8,9-dehydroestrone are preferably sodium or potassium in the form of their hydrides and lithium as n-butyllithium.
The alkaline earth metal salts containing the calcium or magnesium cation are produced with the appropriate base by transmetalation of the alkali metal salt directly or via exchange with a cation exchange resin such as the weakly acidic Amberlite exchangers DP-1, IRC-50, IRC-76, CG-50 or IRP-64, on the appropriate cycle. Acidification of the alkali metal salt of the sulfate esters with a mild acid such as acetic acid, followed by extraction with an alcohol such as n-butanol and neutralization with a stoichiometric amount of calcium or magnesium hydroxide, ammonium hydroxide or the desired amine affords the other salts when desired. In the case of the amine salts, the mono-alkylamines contain from 1 to 6 carbon atoms, such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, tertiary butylamine, hexylamine, and the like. The dialkylamine salts contain from 1 to 6 carbon atoms in each alkyl group and are produced from dimethylamine, diethylamine, diisopropylamine, di(2-methylpentyl)amine, dihexylamine, and the like.
The following examples illustrate the preparation of the salts of 8,9-dehydroestrone by direct metallation with NaH, KH or n-butyl lithium in tetrahydrofuran under an inert atmosphere at about 0° C. The alkali metal salt containing solution is used directly in the sulfation reaction. The introduction of tris(hydroxymethyl)aminomethane at various stages of the process is also illustrated. Examples 6 and 7 illustrate the stabilizing influence of tris(hydroxymethyl)aminomethane.


REFERENCES:
patent: 2834712 (1958-05-01), Beall et al.
patent: 3391169 (1968-07-01), Hughes et al.
patent: 3394153 (1968-07-01), Re
patent: 3608077 (1971-09-01), Glasig
patent: 3649621 (1972-03-01), Stein et al.
patent: 4154820 (1979-05-01), Simoons
patent: 5210081 (1993-05-01), Raveendranath et al.
patent: 5288717 (1994-02-01), Raveendranath et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Salts of 8,9-dehydroestrone sulfate ester does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Salts of 8,9-dehydroestrone sulfate ester, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Salts of 8,9-dehydroestrone sulfate ester will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2538751

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.