Safety valve

Fluid handling – Diverse fluid containing pressure systems – Fluid separating traps or vents

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S587000

Reexamination Certificate

active

06591856

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a safety valve, and more particularly, to a safety valve for a refueling vent line.
BACKGROUND OF THE INVENTION
At gasoline stations, furnishing refueling lines with exhaust devices is known, for the purpose of returning gases produced during the filling operation, and so as not to let these gases reach the environment. However, this conventional approach is often not sufficient for completely avoiding environmental damage. Furthermore, there are also gasoline stations that do not currently employ comparable devices yet. Therefore, in various countries, for passenger motor vehicles having Otto engines, there are regulations that not only the hydrocarbons evaporating from the fuel tank during standstill and travel operation have to be separated in an active charcoal container, but also the hydrocarbon-containing gases displaced from the fuel tank. Therefore, in modern vehicles having tank venting systems, appropriate devices are built in. In this regard, the fuel tank is generally connected to the active charcoal container via an operating vent line, so that the gases escaping from the tank during driving operation and standstill during refueling are condensed in the active charcoal container.
In addition, a second refueling vent line, dimensioned substantially larger in cross section is conventionally provided, connecting the tank filler neck to the active charcoal container. During refueling, pushing the gas hose nozzle into the filler neck opens a flap, which allows the gases produced during refueling, and also those displaced from the tank by the inflowing fuel, to flow into the refueling vent line, and thereby into the active charcoal container. Typically, a seal is provided between the filler neck and the gas hose nozzle so that, during the refueling procedure, the gases cannot reach the atmosphere by going past the gas hose nozzle and by way of the filler neck.
However, in the design and arrangement of a conventional refueling vent line, it is possible that liquid fuel can reach the active charcoal container via the refueling vent line (e.g., during a malfunction of the gas hose nozzle, such as when the gas hose nozzle does not turn off when the tank is full, or when the tank is improperly overfilled). This entry of liquid fuel into the active charcoal container can cause a disturbance in gas mixture formation and possibly also cause damage to the catalytic converter.
SUMMARY OF THE INVENTION
The present invention relates to a safety valve, such as for a refueling vent line, between the tank filler neck and the active charcoal container in a motor vehicle, which prevents the entry of liquid fuel into an active charcoal container. According to the present invention, the safety valve set into the refueling vent line is configured as a float valve. When fuel penetrates into the refueling vent line, and thereby into the safety valve, the outlet of the safety valve is closed by the float. The safety valve is provided with an pipe-end closed by a closure opening out to the environment, operated at normal pressure by a diaphragm. At elevated pressure, the diaphragm effects an opening of the closure opening out on the environment at the anti-pollution pipe-end. When fuel penetrates into the safety valve, first the outlet of the valve to the active charcoal container is closed, and then the closure opening out to the environment is opened as a result of a pressure build-up in the valve, and the penetrating fuel can escape into the environment.
The float may pivot about an axis of rotation positioned laterally below the outlet, and is furnished with a linkage which activates a disk valve at the valve outlet. As soon as the float pivots about its axis, the disk valve is moved toward its valve seat and the outlet is closed. The disk valve itself may be guided by a guidance rail in the outlet pipe-end. The linkage may be configured in a very simple way from a bolt connected to the disk valve and a sliding connecting link, enclosing the bolt, connected to the float. The float may be held at its limit positions by a spring. This prevents the float from opening the disk valve too soon. Opening of the disk valve first may take place when, due to the outflow of the fuel, the lift of the float has sunk below a settable value.
The closure of the anti-pollution pipe-end is formed by a disk valve having a spring force exerted on it, which is actuated by the diaphragm in the valve body via a linkage. The diaphragm operates as a function of the pressure present in the valve. The closing of the outlet to the active charcoal container causes a pressure buildup in the valve. This pressure acts on the diaphragm, which opens the environmental valve using a lever linkage in opposition to the force of the closing spring.
Relatively rapid pressure equalization between the valve outlet of the safety valve and the upper side of the diaphragm enable, in the case of refueling, the loss in flow pressure of the line between the safety valve and the active charcoal container and the throttling losses in the active charcoal container, from causing a premature opening of the closure at the anti-pollution pipe-end. For this reason, the upper side of the diaphragm is covered by a lid, and the inner space formed thereby between diaphragm and lid is connected by the valve pipe-end to the active charcoal container via a channel. As long as the pipe-end of the outlet to the active charcoal container is not closed, the pressure in the valve housing is transferred to the upper side of the diaphragm via the channel, so that the same pressure exists on the upper and lower sides of the diaphragm. In this case, the environmental valve opens only at a pressure in the valve chamber at which the force of the pressure on the environmental valve body exceeds the force of the closing spring of the environmental valve. For this, the channel opening at the outlet can be fitted into the sealing seat of the disk valve, so that the outlet as well as the channel are closed by the disk valve.
The diaphragm may be equipped with a damping function to ensure that the fuel present in the line from the tank filler neck to the valve and in the valve runs off via the anti-pollution pipe-end after the flooding of the valve with fuel and the opening of the closure at the anti-pollution pipe-end. For this purpose, an intermediate wall having a check valve, e.g. a mushroom diaphragm, is fitted into the inner space of the diaphragm, and the side space formed by the lid and the intermediate wall is connected to the outlet via a side channel, the sealing surface of the mushroom diaphragm being provided with at least one restrictor groove. Instead of the restrictor groove, the diaphragm may alternatively be outfitted with a specified roughness or porosity.
When pressure is applied to the diaphragm, the air volume of the inner space is displaced by the lifting-off surface of the mushroom diaphragm toward the active charcoal container pipe-end. After the opening of the valve at the anti-pollution pipe-end, a pressure decrease takes place in the safety valve, and fuel flows into the surroundings. In order to achieve a complete emptying of the safety valve and the line from the direction of the filler neck, access of air to the space above the diaphragm is delayed by the restrictor groove or a specified roughness in the contact surface of the check diaphragm or an opposite surface, so that the environmental valve closes again only after a time delay.
Advantageously, the valve housing is configured as a sunken portion in the region of the closure, in order to prevent the gas present in the safety valve from flowing out and possibly fuel remaining therein, when the anti-pollution pipe-end is opened. The use of the sunken portion prevents the gas from escaping unless the fuel level has sunk below the level of a housing edge positioned above it.


REFERENCES:
patent: 3703165 (1972-11-01), Hansen
patent: 4082106 (1978-04-01), Butcher
patent: 4562855 (1986-01-01), Cummings et al.
patent: 5598870 (1997-02

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Safety valve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Safety valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Safety valve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3087724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.