Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2002-06-12
2004-08-24
Thanh, Loan H. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C128S898000
Reexamination Certificate
active
06780169
ABSTRACT:
1. FIELD OF THE INVENTION
The present invention relates to a shield for a needle and more particularly to a safety shield assembly that may be used in conjunction with a syringe assembly, a hypodermic needle, a needle assembly, a needle assembly with a needle holder, a blood collection needle, a blood collection set, an intravenous infusion set or other fluid handing devices or assemblies that contain piercing elements.
2. BACKGROUND OF THE INVENTION
Disposable medical devices having piercing elements for administering a medication or withdrawing a fluid, such as hypodermic needles, blood collecting needles, fluid handling needles and assemblies thereof, require safe and convenient handling. The piercing elements include, for example, pointed needle cannula or blunt ended cannula.
Safe and convenient handling of disposable medical devices is recognized by those in the medical arts so as to minimize exposure to blood borne pathogens. Safe and convenient handling of disposable medical devices results in the disposal of the medical devices intact.
As a result of this recognition, numerous devices have been developed for shielding needles after use. Many of these devices are somewhat complex and costly. In addition, many of these devices are cumbersome to use in performing procedures. Furthermore, some of the devices are so specific that they preclude use of the device in certain procedures or with certain devices and/or assemblies. For example, some devices employ very short thin needle cannulas. A shield designed to lock near the distal end of one needle cannula might not engage a much shorter needle cannula. Additionally, a shield designed to lock with a wider gauge needle cannula might be more likely to generate a spray upon engaging a much narrower needle cannula. Furthermore, it may be desirable to reduce the force required to effect shielding without reducing the audible and tactile indications of complete shielding.
Therefore, there exists a need for a safety shield assembly: (i) that is manufactured easily; (ii) that is applicable to many devices; (iii) that is simple to use with one hand; (iv) that can be disposed of safely; (v) that does not interfere with normal practices of needle use; (vi) that has tactile features whereby the user may be deterred from contacting the needle, the user may easily orient the needle with the patient and easily actuate and engage the shield assembly; (vii) that has visual features whereby the user may be deterred from contacting the needle, the user may easily orient the needle with the patient and easily actuate and engage the shield assembly; (viii) that is not bulky; (ix) that includes means for minimizing exposure to the user of residual fluid leaking from the needle; and (x) provides minimal exposure to the user because the needle shield is immediately initiated by the user after the needle is withdrawn from the patient's vein.
3. SUMMARY OF THE INVENTION
The present invention is a safety shield assembly that comprises: a shield; means for connecting the shield to a fluid handling device that contains a piercing element, such as needle; and means for pivoting the shield away from the needle; means for securely covering and/or containing the needle within the shield.
Preferably, the shield comprises a rearward end, a forward end, a slot or longitudinal opening for housing the used needle in the forward end, means for securing the needle in the slot, means for guiding the needle into the slot, means for connecting the shield and the fluid handling device, means for guiding the user's fingers to move the shield into various positions, and means for retaining the shield securely over the used needle.
Desirably, the means for connecting the shield to the fluid handling device is with a collar. Preferably, the shield is connected movably to a collar which is connected to a fluid handling device.
Preferably, the shield is connected to the collar by a hanger bar that engages with a hook arm on the collar so that the shield may be pivoted with respect to the collar into several positions. It is within the purview of the present invention to include any structure for connecting the shield to the collar so that the shield may be pivoted with respect to the collar. These structures include known mechanical hinges and various linkages, living hinges, or combinations of hinges and linkages.
Most preferably, the shield is connected to the collar by an interference fit between the hanger bar and the hook bar. Therefore, the shield always is oriented in a stable position and will not move forward or backwards unless movement of the shield relative to the hanger bar and the hook bar is initiated by the user.
Alternatively, the shield and collar may be a unitary one-piece structure. The one-piece structure may be accomplished by many methods, including molding the shield and the collar as a one-piece unit, thereby eliminating the separate shield and collar during the manufacturing or assembly process.
The assembly of the present invention may further comprise tactile and visual means for deterring the user from contacting the needle, providing easy orientation of the needle with the patient and providing the user with a guide for actuation and engagement with the shield.
The assembly of the present invention may further comprise means for minimizing exposure by the user to residual fluid leaking from a used needle. For example, a polymer material, such as a gel, may be located in the shield.
Most desirably, the assembly of the present invention is such that the cooperating parts of the assembly provide the means for the shield to move into a forward position over the needle. Thus, by simple movement of the shield into a forward position over the used needle, the assembly is ready for subsequent disposal. Therefore, the safety shield assembly of the present invention provides minimal exposure of the user to a needle because the shielding is initiated by the user immediately after the needle is withdrawn from the patient's vein.
Desirably, the assembly of the present invention may be used with a syringe assembly, a hypodermic needle, a needle assembly, a needle assembly with a needle holder, a blood collection set, an intravenous infusion set or other fluid handling devices. Preferably, the assembly of the present invention is used with a needle assembly comprising a needle and a hub. Preferably the needle is a conventional double ended needle.
Most preferably, the present invention is used with a needle assembly comprising a hub and a needle connected to the hub whereby the needle comprises a non-patient end and an intravenous end. The collar of the present invention may comprise a hook arm and the shield may be connected movably to the hook arm. Thus the shield may be pivoted with respect to the collar and moved easily into several positions.
Preferably, the collar is fitted non-rotatably with the hub of the needle assembly. Additionally, the collar includes cooperating means that mate with reciprocal means on the shield to help retain the shield in a second position, to propel the shield toward the second position and to provide a clear audible and tactile indication of complete shielding.
The shield preferably includes at least first and second cannula locks for locked engagement with the cannula when the shield is in the second position around the needle cannula. At least one cannula lock is disposed to engage a portion of a needle cannula near the respective needle hub. Thus, the at least one cannula lock is disposed to lockingly engage a short needle cannula. The at least one cannula lock preferably is substantially J-shaped, with a first leg that extends from an edge region of the shield and a second leg that projects angularly back toward the shield. The second leg of the cannula lock is disposed and configured to resiliently deflect as the shield is rotated into its second position around the needle cannula. The second leg of the cannula lock then will resiliently return toward an undeflected condition for trapping and locking t
Becton Dickinson and Company
Casella Anthony J.
Hespos Gereald E.
Thanh Loan H.
LandOfFree
Safety shield assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Safety shield assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Safety shield assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3307909