Safety running system for vehicle

Data processing: vehicles – navigation – and relative location – Relative location – Collision avoidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S435000, C340S903000

Reexamination Certificate

active

06317693

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a safety running system for a vehicle for preventing a subject vehicle from coming into contact with an oncoming vehicle on an adjacent lane of the road for opposite traffic by using an object detection unit such as a radar device.
2. Description of the Related Art
A safety running system for a vehicle as described above is well known in the official gazette of Japanese Patent Unexamined Publication (Kokai) No. HEI 7-14100.
The safety running system disclosed in the above official gazette is adapted to avoid a collision of a subject vehicle with an oncoming vehicle on an adjacent lane of the road for opposite traffic by generating an alarm to the driver of the subject vehicle to make the driver perform a voluntary collision avoidance operation or automatically applying the brakes of the subject vehicle in the event that the subject vehicle enters the adjacent lane for opposite traffic to thereby encounter a possible collision with the oncoming vehicle on the same lane.
As shown in
FIG. 3
, a transverse travelling distance Y
1
of the subject vehicle Ai from the vehicle body axis thereof is calculated from a future travelling locus of the subject vehicle Ai estimated based on the vehicle velocity Vi and yaw rate &ggr;i thereof. Further, a relative transverse distance Y
2
from the vehicle body axis of the subject vehicle Ai to the oncoming vehicle Ao is calculated with a radar device. And, a collision possibility of the subject vehicle Ai with an oncoming vehicle Ao on an adjacent lane for opposite traffic is judged by comparing the transverse travelling distance Y
1
with the relative transverse distance Y
2
.
As shown in
FIG. 14
, however, in a case where the driver of the subject vehicle Ai tries to overtake a preceding vehicle Af, the driver first steers the steering wheel rightward to change the path of movement of the vehicle to the right-hand side of the road (in the case of left-hand side traffic) and then steers it back leftward to return to the original path of movement of the vehicle or the left-hand side lane after the driver's vehicle Ai has over taken the preceding vehicle Af. Due to this, with the safety running system described in
FIG. 3
, there is caused a problem that a possible collision of the subject vehicle with an oncoming vehicle Ao is erroneously judged as occurring as soon as the steering wheel of the subject vehicle is steered rightward even when in reality there is no such collision possibility.
Further, as shown in
FIG. 13
, when a subject vehicle Ai approaches an end of a rightward curve in a left-hand side traffic road, since the driver steers the steering wheel leftward to enter a straight path from the curved path, an actual transverse travelling distance becomes shorter than an estimated transverse travelling distance Y
1
. As a result of this, a judgement is made that there is a collision possibility when in reality there is no such collision possibility, this triggering the performance of an unnecessary collision avoidance control, thereby causing a risk of the driver feeling a physical disorder.
Moreover, the aforementioned conventional safety running system is adapted to judge a possible collision with an oncoming vehicle by estimating a deviation of a subject vehicle to an adjacent lane of the road for opposite traffic. Therefore, this deviation to an adjacent lane of the road for opposite traffic is determined in accordance mainly with the azimuth of the travelling subject vehicle (an angle formed by the vehicle body axis of the subject vehicle and the center line of the road). Due to this, for instance in a case where the subject vehicle is steered so as to avoid an obstacle on the road side, an erroneous judgement of a collision possibility is made only when the azimuth of the travelling subject vehicle is temporarily directed to the side of the adjacent lane for opposite traffic, and therefore there is caused a problem that every time such an erroneous judgement is made, an unnecessary collision avoidance control is performed to make the driver feel troublesome.
SUMMARY OF THE INVENTION
The present invention was made in view of the aforesaid circumstances and an object thereof is to prevent the performance of an unnecessary collision avoidance control by making a judgement of a possible collision with an oncoming vehicle in an accurate fashion, and further, to prevent the occurrence of a collision avoidance operation based on an erroneous judgement of a possible collision between the subject vehicle and an oncoming vehicle when the driver of the subject vehicle tries to overtake a preceding vehicle, or when the subject vehicle approaches an exit portion of a curve or bend.
To solve the above object, according to a first aspect of the invention, there is provided a safety running system for a vehicle including, object detection unit for detecting an object existing in a direction in which a subject vehicle travels, a travelling locus estimation unit for estimating a future travelling locus of the subject vehicle, a relative transverse deviation calculation unit for calculating a relative transverse deviation between the subject vehicle and an oncoming vehicle based on the results from the detection by the object detection unit and the future travelling locus of the subject vehicle, a contact possibility judgement unit for judging that there is a contact possibility of the subject vehicle with the oncoming vehicle when the relative transverse deviation calculated by the relative transverse deviation calculation unit falls within a predetermined range, a curve exit detection unit for detecting that the subject vehicle approaches an exit portion of a curve, and a correction unit for correcting the relative transverse deviation based on the results of the detection by the curve exit detection unit.
Further, according to the second aspect of the present invention, there is provided a safety running system including, an object detection unit for detecting an object present in a travelling direction of a subject vehicle, a travelling locus estimation unit for estimating a future travelling locus of the subject vehicle, a relative transverse deviation calculation unit for calculating a relative transverse deviation between the subject vehicle and an oncoming vehicle on an adjacent lane for opposite traffic based on the result of the detection of the object detection unit and a future travelling locus of the subject vehicle estimated by the travelling locus estimation unit, a contact possibility judgement unit for judging that there is a contact possibility of the subject vehicle with the oncoming vehicle when a relative transverse deviation calculated by the relative transverse deviation calculation unit falls within a predetermined range, a contact avoidance unit for automatically performing a contact avoidance operation when the contact possibility judgement unit judges that there is a contact possibility of the subject vehicle with the oncoming vehicle, and an overtaking judgement unit for judging whether or not the subject vehicle is in course of overtaking a preceding vehicle, wherein when the overtaking judgement unit judges that the subject vehicle is in course of overtaking a preceding vehicle, the contact avoidance unit restrains a contact avoidance operation or ceases a contact avoidance operation being performed.
In addition, according to a third aspect of the present invention, there is provided a safety running system comprising, an object detection unit for detecting an object present in a travelling direction of a subject vehicle, a travelling locus estimation unit for estimating a future travelling locus of the subject vehicle, a relative transverse deviation calculation unit for calculating a relative transverse deviation between the subject vehicle and an oncoming vehicle on an adjacent lane for opposite traffic based on the result of the detection of the object detection unit and a future travelling locus of the subject vehicle es

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Safety running system for vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Safety running system for vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Safety running system for vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587280

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.