Electricity: electrical systems and devices – Safety and protection of systems and devices – Load shunting by fault responsive means
Reexamination Certificate
2001-01-22
2003-04-22
Leja, Ronald W. (Department: 2836)
Electricity: electrical systems and devices
Safety and protection of systems and devices
Load shunting by fault responsive means
C361S103000, C307S125000
Reexamination Certificate
active
06552888
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a logic control device that can be integrated into any double or single household or commercial electrical outlet. It controls the outlet and transforms it into a safe and “smart” outlet. The device can also be integrated into an extension cord, adapter or placed over an outlet as a cover plate. The logic circuit in the smart outlet instantly senses the state and condition of itself and the physical and electrical changes that occur.
2. Description of the Related Art
Every year thousands of people are killed or injured by accidents and fires caused by faulty electrical devices or appliances causing electrical shock. Many protective devices are being implemented to protect young children from accidentally accessing an electrical outlet, causing injuries due to electrical shock. Modern appliances that are more prone to cause accidents are equipped with ground fault protection. Such ground fault circuitry interrupters either interrupt the power until the electric circuit is restored to normal, for example, by manually resetting an electro-mechanical breaker. Some circuits automatically power-up when normal power resumes. Conveniently, such ground fault circuit interrupters are wired, for example directly into the tool, device or appliance, or it is molded into the cord designated for the tool or device line. Ground fault interrupters are developed to sense minute imbalances in a circuit by current leakage to ground.
Standard electrical built-in outlets either in the home or in an industrial setting, may be also equipped with a ground fault circuit interrupter, a GFCI. Such GFCI devices provide a test and reset function which both work together so that a tripped GFCI cannot be reset if the GFCI circuit no longer provides ground fault protection. The test button can still be operated in the event of an open neutral condition even though the GFCI circuit is no longer powered. A built-in line load reversal feature also prevents the GFCI from resetting if the load and the conditions are mistakenly reversed. The GFCI receptacle face will be live, but there will be no power delivered to devices downstream, indicating a load reversal.
An intelligent circuit interrupt system is disclosed, for example, in U.S. Pat. No. 6,111,733 in which an intelligent circuit is electrically connected between an AC source and a load for interrupting a flow of AC from the source to the load upon detection of an interrupt condition. A circuit interrupter electrically connected to phase and neutral terminals of the AC source defines the interrupt condition. A relay switch with a relay coil and phase and neutral contacts is included such that line and load ends of the phase contact are electrically connected, respectively, between the interrupt means load side phase port and a phase terminal of the load. Line and load ends of the neutral contact are electrically connected, respectively, between the interrupt neutral port and a neutral terminal of the load. The relay coil is electrically coupled between load sides of said phase and neutral contacts for controlling the contacts in response to the interrupt signal. An open-contact miswiring detector (OCMD) is electrically connected to one of the phase and neutral contacts for detecting a miswiring condition when the contacts are in an open state, and a closed-contact miswiring detector (CCMD) is electrically connected to the OCMD and to one of the neutral and phase contacts for detecting a miswiring condition when the contacts are in a closed state. A timing signal generator generates system timing signals. A test circuit electrically coupled to the interrupt means and the timing signal generator tests the interrupt means operability. An alarm circuit is electrically responsive to the test circuit, the timing signal generator, the OCMD and the CCMD for communicating an open-contact miswiring condition, a closed-contact miswiring condition, an operational failure condition, and a need for external testing condition. A power supply is electrically connected between the load ends of the phase and neutral contacts, and to the timing signal generator.
Thus, there is continuous need for an electrical outlet having additional safety features to protect against hazards inherent with standard outlets, such as fire hazards due to overheating, insertion of improper objects into the outlet and current overload. In addition, there is a need to provide an outlet which is capable of detecting whether a load is present.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an outlet connected to an intelligent circuit, making the outlet a logically controlled device. The intelligent circuit is mounted inside or alongside a standard electrical code-approved outlet box, such that the outlet itself can be installed in the same or similar manner as any outlet is installed. The outlet with the intelligent circuit is preferably a wall mount single or double outlet box and creates thereby a “smart outlet.” Thus, existing industry standard outlet-related functions are maintained. The smart outlet does not alter normal operation of any appliance or device, and does not change or modify the normal flow of electricity or any of its characteristic. It operates at the rated voltage, amperage and frequency, for example, at 120Vac and 10Amp for residential use, or at 240Vac, 15 Amp for commercial use, either at 50 or 60 Hz. The smart outlet of the present invention allows normal operation of any device or appliance plugged to the outlet directly or through an extension cord. It can be used with any standard on/off, a remote control unit or any other switching device.
Generally, power supplies from household or industrial outlets deliver power as soon as the device or appliance is plugged in or, power is always present and uninterrupted at the outlet, power or extension cord and appliance or device, except for an interruption within or at this device, yet in general all devices and appliances remain fully or partially powered, in particular power and extension cords. When a smart outlet is used and the electrical plug of an electrical device or appliance is properly inserted, the device is initially always turned off. The logic circuit will sense this condition and the power will remain off, i.e., the smart outlet will not provide any power to the device or appliance. Only when the power switch of the device or appliance is turned on and the circuit is electrically completed, can the device or the appliance draw power and operate. Thus, if a bulb in a lamp is unscrewed while the lamp switch is on, one may touch the contacts inside the socket and not experience an electrical shock. The smart outlet is designed such that it will shut off the power, when the circuit is interrupted (for example, the bulb is unscrewed or has burned out). The power will remain off until the electrical circuit is re-established, and the electrical device or appliance is turned on again.
Thus, only a properly operating electrical device or appliance may be powered up with the device of the present invention. If the electrical circuit is interrupted or overloaded, a fault is detected and the logic circuit of the smart outlet shuts the power to the connected device or appliance off.
The smart outlet is designed to continually monitors any or all of the designed functions, such as it monitors proper and full plug insertion, load presence, current load on the outlet and it senses the outlet temperature.
Accordingly, it is an important object of this invention to monitor whether the blades of the plug are fully and correctly inserted into the slotted openings of the socket, before the outlet provides power. This aspect is of particular importance to promote child safety, because children are known to be attracted to inserting a variety of foreign objects such as bobby pins, metal nails or needles, which may cause disastrous injuries to children. Thus, the smart outlet monitors the acceptance of a properly and full
Hildebrand Christa
Leja Ronald W.
Norris McLaughlin & Marcus P.A.
LandOfFree
Safety electrical outlet with logic control circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Safety electrical outlet with logic control circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Safety electrical outlet with logic control circuit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3096582