Run specific training method

Exercise devices – For track or field sport

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S051000, C482S054000, C482S100000, C482S105000, C482S113000, C482S137000, C482S139000

Reexamination Certificate

active

06482128

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to a method for improving race times for runner, and in particular, for the well-trained athlete whose performance has plateaued. The method generally involves separating the act of running into horizontal and vertical components and training each component using sports specific, supra-maximal techniques designed to achieve both maximum acceleration and a minimum stretch-shortening cycle.
BACKGROUND OF THE INVENTION
How fast can a human being run? Human race times have seen continued improvement ever since these records have been kept. The changes from the 1940's include for example a reduction in the 100 meter time from about 10.2 seconds to about 9.84 seconds and a reduction in the 400 meter time from about 45.9 seconds to about 43.29 seconds. Obviously these improvements cannot continue indefinitely, limited by the genetic capabilities of man. How then can this trend continue?
To date, improvements in running performance are due primarily to changes in track surfaces and shoes, diet and supplements, psychological, and training techniques. The greatest potential for improvement appears to be in the area of training techniques.
By increasing intensity and duration, performance will improve up to a point. Continued training above and beyond an optimal level will produce a subsequent decline in performance due to mental and physical breakdown. This phenomenon is known as the overtraining syndrome. If an athlete is following state of the art training philosophy and methods and is training at the threshold of overtraining, performance can only improve if the training program is improved.
Since 1970, when Arthur Jones established Nautilus Corp., a multitude of exercise machines have been developed. These machines have used a wide variety of resistance mechanisms for training, including isotonic, isokinetic, pneumatic, and hydraulic resistance. Although devices have been designed for each limb/trunk muscle in the body, a biomechanically specific method and apparatus for training is not currently available for runners.
Biomechanical analysis has shown that the most important muscles causing forward progress of the body in running are the hip flexors and hip extensors. Their primary mode of contraction is acceleration and stretch shortening. Numerous hip training apparatuses are available, however, they all have their shortcomings with respect to specificity for a particular sport and supramaximal training capabilities.
Some hip exercise devices derive stability by placing the athlete in a recumbent position (lateral, prone or supine, depending on the manufacturer), as in U.S. Pat. Nos. 4,200,279, 4,247,098, 5,273,508 and Nautilus, Stairmaster and Cybex product catalogues. None of these devices train the runner in an upright position that simulates running. Moreover, all lack a fixation system adequate for isolating the desired muscles. The U.S. Pat. No. 4,200,279 patent discloses no hip flexor training capabilities. While the U.S. Pat. No. 5,273,508 patent discloses some hip flexor strengthening capabilities, it does not allow for single-leg training, nor does it isolate the hip muscle. The U.S. Pat. No. 5,273,508 patent specifically includes use of the lower back and abdominal muscles during training of the hip, and hence, does not isolate the desired muscles. Finally, this device does not train the lower hamstrings muscles, which are important for the hip extension component of running (especially in the eccentric stretch-shortening mode).
The device of the U.S. Pat. No. 4,247,098 patent discloses only a two point fixation system to secure the athlete. In addition, stretch-shortening cannot be trained because there is no eccentric component in the resistance device. Although some acceleration can be trained by virtue of a hydraulic resistance device, there is no adjustable resistance mechanism as the hydraulic device is simply a “shock absorber” type of an apparatus. Finally, this device does not train the lower hamstrings muscles, which are important for hip extension (especially in the eccentric stretch-shortening mode).
Various upright hip exercising machines have been developed, such as disclosed in U.S. Pat. Nos. 4,600,189, 4,621,807, 4,711,448, 4,732,379, 5,067,708, 5,308,304, 5,354,252, 5,468,202. The main limitation of the devices disclosed in the above-noted patents is that they do not adequately stabilize the trunk of the athlete to permit isolation of the target muscles. U.S. Pat. No. 4,732,379 does not disclose an upper chest, upper back or shoulder pad, and no hand grips. The devices of the U.S. Pat. No. 4,732,379 patent discloses an inadequate two-point trunk fixation. All of the other patents listed above are all purely isotonic exercisers using a weight stack, and hence can not adequately provide acceleration training. Another problem is limited vertical adjustment capabilities, which is important to properly center the hip joint during exercising for sports specific training. While the device of U.S. Pat. No. 5,067,708 discloses multiple vertical adjustments at the actuator, this device provides no trunk stability. Finally, the athlete is not able to train the lower hamstrings for hip extension with these devices.
An analysis of the biomechanics of running teaches that the best way to train for acceleration and power is with hydraulic resistance. Numerous hydraulic and pneumatic devices are available. These devices typically orient the piston rod parallel or perpendicular to the line of force production. Pneumatic devices are less preferred because the compressibility of air, as opposed to the incompressibility of liquids, gives these devices a certain bounce effect at the start of each cycle.
U.S. Pat. No. 4,357,010 (Telle) discloses a hydraulic device where the rate of movement of the bars during lifting of the weights is maintained substantially constant by an ‘isokinetic device’ connected between the structure and one of the beams. The Telle device uses the hydraulic device for an isokinetic (constant speed) function to control momentum of the weights and to maintain constant velocity. Constant velocity is a sub-optimal method of training for acceleration. Telle also teaches that weights are needed to control the malingering factor that may occur when training on solely isokinetic equipment. This teaching strongly suggests that the Telle device is mainly an isotonic training apparatus, where the hydraulic/isokinetic unit is used in conjunction with the weights to maintain constant velocity, but not alone. Additionally, the hydraulic unit of Telle is not detachable. When training stretch-shortening isotonically, the inherent friction in the hydraulic unit, even if the resistance is set at zero, lessens the eccentric load and gives sub-optimal stretch-shortening training;
The vertical component of running relates to the up and down motion of the body. Downward momentum and upward propulsion of the body are controlled by the quadriceps and calf muscles acting simultaneously. In order to increase vertical loads, weight or some downward force needs to be applied to the body. One way to train this up and down motion is to perform squats. Either barbells or any one of a large number of available squat machines can be used to perform this maneuver. The motion of the legs during this maneuver is much different than when running, including rate, range of motion and proportion of force incurred by the quadriceps versus the calf muscles. For example, when performing squats, the quadriceps absorb the majority of the force leading to undertraining of the calf muscles for running. Squat training is thus not very sport specific for running.
Another technique is to run with a weighted backpack or use of any one of a number of weighted harnesses, belts or body suits. U.S. Pat. Nos. 4,674,160 and 5,158,520 disclose a waist belt attached to a cable that is attached to a weighted rack. These devices are specifically designed for squat training, which is inadequate for the present invention.
Weighted waist b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Run specific training method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Run specific training method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Run specific training method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2985265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.