Ruminant tissue analysis at packing plants for electronic...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06579236

ABSTRACT:

FIELD OF THE INVENTION
The present invention concerns performing ultrasound tissue imaging and analysis to measure internal tissue characteristics of ruminants at packing plants during processing but prior to reaching the carcass stage, and using data obtained by such analysis for improved management of feedlot and packing plant processing of ruminants and objectively determining meat quality and yield.
BACKGROUND
The cattle growth, production and processing industry comprises four major components, producers, feedlots, packing plants and wholesalers/retailers. The cattle producers maintain cowherds. The herds produce calves that are raised and grown on pasture grazing land, much of which is unsuitable for cultivation. The calves are grown to a certain size, after which they are moved to a confined feedlot. Cattle are then processed for consumers at packing plants.
A. Feedlots
Feedlots generally care for thousands of head of cattle or other ruminants (ruminants are cud chewing, quadruped hoofed mammals of the suborder Ruminantia, and include domestic cattle, sheep, goats, bison, buffalo, deer, and antelopes) at once in various stages of growth. These animals come from a variety of sources with widely varying previous care and feeding performance history. Cattle within a feedlot are physically contained in cattle pens, each pen typically having a feed bunk to receive feed, a water source for drinking and manually-operated gates to enter and exit the pens. A feedlot typically includes: (a) a receiving area where cattle are contained upon their arrival at the feedlot; (b) a processing area where cattle, shortly after their arrival, are tagged, weighed and given health care and growth promotant products; (c) a hospital area where individual animals that are ill or otherwise in need of treatment can be medicated or otherwise treated and returned to their pens; and (d) a shipping area where cattle are prepared for shipment to a packing plant for slaughter.
Although feedlot sizes range from a one-time capacity of a few heads to a capacity of over one-hundred-thousand head, the trend in North America is towards large feedlots in the ten thousand to one-hundred-thousand head capacity. These larger feedlots feed the majority of feedlot-fed cattle in North America intended for beef consumption.
The owners of particular cattle in a feedlot are defined by a unique lot number. The number of cattle in a lot may vary, and an owner may own a portion of a lot, a portion of multiple lots, or all of one or more lots. Each lot may occupy one or multiple pens. Animals also may each be identified by a unique individual number.
Proper care for animals in a large feedlot is a complex and time-consuming task because of, for example, feeding, water supply, insect control, and individual or group treatment requirements. Treatments may include group treatments where various medications are added to the feed, or individual treatments that are applied topically, orally, by injection or by implantation to selected individual or groups of animals.
Regular sorting of animals also occurs. Animals at a feedlot may be moved individually and in groups several times during the several-month period each animal is kept in the feedlot. This movement of animals from their home pen to other pens, from a home pen to a treatment area and later return, and from several pens into a common pen, is necessary for the proper care and maintenance of the animals.
Feedlots assess various charges to owners for the care and maintenance of their animals. These charges typically are assessed by lot number at periodic intervals based on feedlot care and maintenance records, not on an individual animal basis (except for individual hospital treatments). Examples of assessed charges include ration charges in dollars-per-ton, health care and growth promotion product charges, a daily yardage fee per head, and handling charges.
Within the feedlot cattle population, there is tremendous diversity in individual animal characteristics, such as weight, frame size, muscling, fat content and deposition rate, breed type, rate of gain, feed efficiency, intramuscular fat (marbling), sex, age, health and drug treatments, nutrition and growth history, and other factors. The diverse beef cattle population results in an extremely variable beef product for the consumer in terms of eating quality, fatness, tenderness, size of cuts and other factors. It has been a primary goal of the beef industry associations to improve the quality and uniformity of beef for the American consumer for many years. The 1991 Beef Quality Audit identified approximately $280 per head being wasted, of which more than $150.00 was excess fat.
In order to improve the current beef product, it is first necessary that the current diverse cattle population is managed for optimum efficiency and desired carcass cut out quality and value for the consumer. Second, ultimately the genetic make up of the producer cowherd must be changed. The livestock industry has tried for years, with limited success, to improve the genetics of the cattle population to produce the types of animals that will yield a high percentage of lean meat with a low percentage of fat efficiently, and also provide a desirable and also provide a desirable eating quality for the consumer. However, there has been no effective way for large feedlots to: (a) measure and sort animals individually; (b) keep accurate and complete records of live physical characteristics and charges for each animal; or (c) produce an economic end point determination for each animal using growth performance data. There also has there been no effective way to match growth performance data to end-product carcass data for each animal from slaughtering operations that would enable a correlation between carcass value and live animal performance and measured characteristics so as to help identify superior genetic types for future breeding and management purposes, and to identify management practices that will maximize the value of the arrival in the market.
Based on the above, there clearly is a need to be able to measure and track the physical and performance characteristics of each animal during its residence in the feedlot for determining an optimum marketing date. Ideally, the physical and growth characteristics of each animal should be known at every stage of its stay in the feedlot in order to determine when the animal should be slaughtered for optimum growth efficiency and value of the carcass based upon a carcass grading target and market conditions.
There also is a need for a method for obtaining yield and grade information for each animal as soon as it is processed at a packing plant. This information would further help feedlot operators better determine how to manage cattle at feedlots and help producers to improve genetics. Currently, grading information is based generally on government grading, which is done solely by visual inspection with intermittent checks by manual measurements. Actual yield and quality grade information for each animal processed by a packing plant is not available until the government grading has been completed, which typically is two or more days after an animal has been processed by the packing plant. Sometimes rib eye tracings also are used for grading, but these tracings take from several hours to several days to obtain and analyze following the typical two-day grading delay. Real time information from the packing plant prior to processing each animal to a carcass concerning each animal's yield and quality grade has heretofore not been available.
Methods and systems used prior to the present invention have been too inaccurate or lack the capability to identify and track characteristics of performance and charges on an individual animal basis. Additionally, they have been too labor intensive and too injurious to animals, and have required skill levels not readily available in feedlots or packing plants. Some of these prior known methods and systems are discussed below.
Pratt U.S. Pat. Nos. 4,733,971, issued Mar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ruminant tissue analysis at packing plants for electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ruminant tissue analysis at packing plants for electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ruminant tissue analysis at packing plants for electronic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3134478

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.