Rugate filter and method of making same

Optical: systems and elements – Light interference – Produced by coating or lamina

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S580000, C359S589000, C427S162000

Reexamination Certificate

active

06256148

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of rugate filters for reflecting selective electromagnetic frequencies and, in particular, to a method of making a multi-wavelength reflecting filter in the form of a coating on a translucent plastic or glass substrate
2. Description of Related Art
It is well known in the field of optics that when light impinges upon any interface where there is a change in the index of refraction from one material to another, air to glass for example, some of the incident light will be reflected. In addition, at the interface where the light traverses from a material of relatively high index of refraction to one having a lower index of refraction, a phase change of 180 degrees occurs in the reflected light. Thus by properly selecting layer thickness, destructive cancellation of the incident light at consecutive interfaces is achieved. Consequently, the more interfaces an incident light beam traverses, the greater the amount of the incident light is reflected. Thus if enough layers are incorporated substantially all the light of a particular wavelength can be filtered out before reaching the substrate.
Therefore, conventional optical filters usually consist of a series of discrete layers of material deposited on an optical substrate. The material of each layer is selected, such that there is a change in the index of refraction at each interface, so that the index of refraction alternates from a higher value to a lower value or visa versa at each layer interface. Thus as the number of layers increases, the greater the amount of incident light that is reflected. Examples of “stacked” layer filter designs can be found in U.S. Pat. No. 5,238,738 “Polymeric Minus Filter” by R. H. Miller and U.S. Pat. No. 3,792,916 “Anti-Laser Optical Filter Assembly” by D. S. Sarna. U.S. Pat. No. 3,853,783 “Vanadyl Phthalocyanine Sulfonamides And Laser Protective Plastic Filters Containing The Same” by R. J. Tucker particularly discloses a coating formulation offering protection form lasers operating from 620 to 720 nanometer wavelengths. However, such multi-layer coatings when used to protect from lasers operating over a wide range of discrete frequencies, become very thick. In addition, the occurrence of discrete interfaces makes the coatings relatively susceptible to mechanical failure and laser damage. Furthermore, the fabrication process does not lend itself to the non-periodic structure called for by multiple bands at non-commensurate wavelengths.
A newer approach is to use rugate filters that consist of a single layer of material formed wherein the index of refraction varies throughout its thickness. Because such rugate filters are typically formed by a continuous deposition process, it is an easy matter to vary the mixture deposited on the substrate, and thus vary the index of refraction. Examples can be found in U.S. Pat. No. 5,258,872 “Optical Filter” by W. E. Johnson, et al. and disclosed in U.S. Pat. No. 5,475,531 “Broadband Rugate Filter” by T. D. Rahminow, et al. They have the ability to meet optical specifications while avoiding the abrupt material interfaces inherent in a stacked layer filter. The option to implement multiple rejection bands within a common coating structure also tends to minimize mechanical failure issues.
It is also known that a number of wavelengths can be suppressed by having the profile of the final rugate filter be the resultant profile of the sum of the individual profiles desired, which is discussed in U.S. Pat. No. 5,523,882 “Rugate Filter Having Suppressed Harmonics” by T. D. Rahmolow. This patent discloses a concept for suppressing both the principle wavelength and its harmonics by setting the index of refraction versus optical thickness profile that superimposes on the principle sinusoid for the rejection of a principle wavelength a secondary sinusoid having a index of refraction versus optical thickness profile with an amplitude of about 10 percent of the principle sinusoid, and a phase difference of about minus 90 degrees. U.S. Pat. No. 5,293,548 “Dispersive Rugate Coatings” by E. T. Siebert also discloses coatings having a spatially varying index of refraction profile through the depth thereof so as to provide a prescribed dispersion characteristic that matches a dispersion characteristic of a source of radiation signal. Thus rugate filters are well known in the art.
However, there are several problems in making such rugate filters, among the most important is that the prior art processes for making such filters typically depend upon processes that required expensive vacuum deposition techniques commonly called “sputtering.” In the sputtering process it is difficult to accurately control the sputtering of two materials to precisely vary the index of refraction. Other processes such as laser flash evaporation, ion beam assisted deposition, resistive and electron-beam evaporation all do not lend themselves to large plastic or glass substrates and/or require relatively expensive equipment. The use of vapor deposition processes eliminates some of the difficulties encountered when sputtering. But providing a process that accurately varies the index of refraction so as to provide precise reflectance bands, while providing maximum light transmittance therethrough, without requiring expensive equipment and/or process control procedures has not been heretofore available.
Thus, it is a primary object of the invention to provide a process for making a rugate filter having multiple reflectance bands.
It is another primary object of the invention to provide a process for making a rugate filter having multiple reflectance bands and improved transmittance without requiring expensive equipment.
It is a further object of the invention to provide a process for making a rugate filter with an index of refraction profile that simulates a continuously varying refractive index by depositing discrete micro-layers.
SUMMARY OF THE INVENTION
The invention is a rugate filter and a method of depositing a rugate filter coating on a substrate, with the coating having an index of refraction that varies with the depth thereof. In detail, the method comprises the steps of:
a) Placing the substrate in an apparatus capable of depositing the coating by a plasma enhanced chemical vapor deposition process, the apparatus having the capacity to deposit a coating from a mixture of at least two gases and means to control the mixture of gases as a function of time. The preferred gases are Ammonia gas (NH
3
) and Nitrous Oxide gas (NO
2
), the mixture of which is varied, in the presence of Silane gas (SiH
4
)and Argon, the amount within the chamber being held constant. The resulting coating is a combination of Silicon, oxygen and nitrogen specific ratios providing the variation in the index of refraction. Silicon Dioxide (SiO
2
) provides an index of refraction of about 1.5 while Silicon Nitride (Si
3
N
4
) provides a value of about 2.0.
The plasma-enhanced chemical vapor deposition apparatus includes a vacuum chamber wherein the substrate is mounted therein. A RF generator is coupled via an impedance matching network to a lower electrode positioned below the substrate. An upper electrode is positioned at the top of the chamber above the substrate. Thus when the power is on and the chamber is at a reduced pressure, a plasma is generated within the chamber. Typically, a water heating system is used to heat the chamber walls and electrodes to proper operating temperatures. Flow control valves are coupled to a gas manifold, for adjusting the flow of process gases to the chamber and are controlled by a computer. An exhaust port is coupled to the chamber which includes a throttle valve for controlling gas flow to a blower and pump. The drawing of a vacuum on the chamber insures that the mixture of gases therewithin is maintained at the desired pressure.
b) Calculating the required continuous refractive index profile for rejecting at least one electromagnetic radiation wave length wherein the index of refraction is a function of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rugate filter and method of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rugate filter and method of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rugate filter and method of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552033

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.