Rubber blend containing cyclized polyisoprene

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S212000, C525S216000, C525S232000, C525S241000

Reexamination Certificate

active

06340727

ABSTRACT:

BACKGROUND OF THE INVENTION
Pneumatic passenger and truck tires have rubber treads. The tread rubber is generally compounded to provide relatively low rolling resistance with reasonable wear and traction characteristics. It is desirable for a tire to exhibit good traction characteristics on wet and dry pavements, and for the tire to provide good treadwear and low rolling resistance. In order to reduce the rolling resistance of a tire, rubbers having a high rebound can be utilized in making the tires' treads. Tires made with such rubbers undergo less energy loss during rolling. The traditional problem associated with this approach is that the tire's wet traction and wet skid resistance characteristics are compromised. This is because good rolling resistance which favors low energy loss and good traction characteristics which favor high energy loss are viscoelastically inconsistent properties.
In order to balance these two viscoelastically inconsistent properties, mixtures of various types of synthetic and natural rubber are normally utilized in tire treads. For instance, various mixtures of styrene-butadiene rubber and polybutadiene rubber are commonly used as a rubbery material for automobile tire treads. To further improve traction characteristics, silica is also commonly included in the tread rubber as a filler. However, such blends are not totally satisfactory for all purposes.
U.S. Pat. No. 4,843,120 discloses that tires having improved performance characteristics can be prepared by utilizing rubbery polymers having multiple glass transition temperatures as the tread rubber. These rubbery polymers having multiple glass transition temperatures exhibit a first glass transition temperature which is within the range of about −110° C. to −20° C. and exhibit a second glass transition temperature which is within the range of about −50° to 0° C. According to U.S. Pat. No. 4,843,120, these polymers are made by polymerizing at least one conjugated diolefin monomer in a first reaction zone at a temperature and under conditions sufficient to produce a first polymeric segment having a glass transition temperature which is between −110° C. and −20° C. and subsequently continuing said polymerization in a second reaction zone at a temperature and under conditions sufficient to produce a second polymeric segment having a glass transition temperature which is between −20° C. and 20° C. Such polymerizations are normally catalyzed with an organolithium catalyst and are normally carried out in an inert organic solvent.
U.S. Pat. No. 5,137,998 discloses a process for preparing a rubbery terpolymer of styrene, isoprene and butadiene having multiple glass transition temperatures and having an excellent combination of properties for use in making tire treads which comprises terpolymerizing styrene, isoprene and 1,3-butadiene in an organic solvent at a temperature of no more than about 40° C. in the presence of (a) at least one member selected from the group consisting of tripiperidino phosphine oxide and alkali metal alkoxides and (b) an organolithium compound.
U.S. Pat. No. 5,047,483 discloses a pneumatic tire having an outer circumferential tread where said tread is a sulfur-cured rubber composition comprised of, based on 100 parts by weight rubber (phr), (A) about 10 to about 90 parts by weight of a styrene, isoprene, butadiene terpolymer rubber (SIBR), and (B) about 70 to about 30 weight percent of at least one of cis 1,4-polyisoprene rubber and cis 1,4-polybutadiene rubber wherein said SIBR rubber is comprised of (1) about 10 to about 35 weight percent bound styrene, (2) about 30 to about 50 weight percent bound isoprene and (3) about 30 to about 40 weight percent bound butadiene and is characterized by having a single glass transition temperature (Tg) which is in the range of about −10° C. to about −40° C. and, further, the said bound butadiene structure contains about 30 to about 40 percent 1,2-vinyl units, the said bound isoprene structure contains about 10 to about 30 percent 3,4-units and the sum of the percent 1,2-vinyl units of the bound butadiene and the percent 3,4-units of the bound isoprene is in the range of about 40 to about 70 percent.
U.S. Pat. No. 5,272,220 discloses a styrene-isoprene-butadiene rubber which is particularly valuable for use in making truck tire treads which exhibit improved rolling resistance and tread wear characteristics, said rubber being comprised of repeat units which are derived from about 5 weight percent to about 20 weight percent styrene, from about 7 weight percent to about 35 weight percent isoprene and from about 55 weight percent to about 88 weight percent 1,3-butadiene, wherein the repeat units derived from styrene, isoprene and 1,3-butadiene are in essentially random order, wherein from about 25 percent to about 40 percent of the repeat units derived from the 1,3-butadiene are of the cis-microstructure, wherein from about 40 percent to about 60 percent of the repeat units derived from the 1,3-butadiene are of the trans-microstructure, wherein from about 5 percent to about 25 percent of the repeat units derived from the 1,3-butadiene are of the vinyl-microstructure, wherein from about 75 percent to about 90 percent of the repeat units derived from the isoprene are of the 1,4-microstructure, wherein from about 10 percent to about 25 percent of the repeat units derived from the isoprene are of the 3,4-microstructure, wherein the rubber has a glass transition temperature which is within the range of about −90° C. to about −70° C., wherein the rubber has a number average molecular weight which is within the range of about 150,000 to about 400,000, wherein the rubber has a weight average molecular weight of about 300,000 to about 800,000 and wherein the rubber has an inhomogeneity which is within the range of about 0.5 to about 1.5.
Vinyl isoprene rubber (3,4-polyisoprene rubber) has heretofore been taught to be useful for various purposes such as, for example, as a blend with other rubbers in tire treads and in various industrial products, such as vibration dampers, belts and shoe soles. For instance see U.S. Pat. No. 4,383,085 and U.S. Pat. No. 4,756,353.
U.S. Pat. No. 5,087,668 and U.S. Pat. No. 5,300,577 disclose a sulfur cured rubber composition composed of, based on 100 parts by weight rubber (phr); (a) about 5 to about 35 parts by weight 3,4-polyisoprene rubber; (b) about 20 to about 60 parts by weight cis 1,4-polyisoprene rubber; and (c) about 10 to about 50 parts by weight of at least one other rubber selected from at least one of solution polymerization formed styrene/butadiene copolymer rubber having a styrene/butadiene ratio in the range of about 5/95 to about 30/70, emulsion polymerization formed styrene/butadiene copolymer rubber having a styrene/butadiene ratio in the range of about 10/90 to about 60/40, cis 1,4-polybutadiene rubber, isoprene/butadiene copolymer rubber having an isoprene/butadiene ratio in a range of about 30/70 to about 70/30, styrene/isoprene copolymer rubber having a styrene/isoprene ratio in a range of about 10/90 to about 35/65, and styrene/isoprene/butadiene terpolymer rubber; wherein said 3,4-polyisoprene rubber, in its uncured state, is characterized by having a glass transition temperature (Tg) in the range of about −15° C. to about −20° C., a Mooney (ML1+4) value in the range of about 70 to about 90, and, further, a polymer structure containing about 40 to about 70, preferably about 50 to about 60, 3,4-vinyl isoprene units, about 30 to about 50 percent 1,4-cis and trans units and about 2 to about 10 percent 1,2-isoprene units with the total of its 3,4 and 1,2 units being in the range of about 56 to about 63 percent.
SUMMARY OF THE INVENTION
This invention is based upon the discovery that cyclized polyisoprene polymers can be incorporated into tire tread compounds to improve traction, treadwear, and resistance to tear. It is further based upon the discovery that blends of cyclized polyisoprene polymers with halobutyl rubber

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rubber blend containing cyclized polyisoprene does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rubber blend containing cyclized polyisoprene, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rubber blend containing cyclized polyisoprene will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2859805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.