Package making – Methods – Applying a partial cover
Reexamination Certificate
2001-08-31
2003-09-23
Rada, Rinaldi I. (Department: 3721)
Package making
Methods
Applying a partial cover
C100S004000, C100S005000, C100S007000, C100S099000
Reexamination Certificate
active
06622455
ABSTRACT:
TECHNICAL FIELD
BACKGROUND
1. Field of the Invention
The present invention relates generally to semi-automatically controlled round balers, and, more particularly, to round balers with semi-automatically sequenced operating cycles and a selectively variable stopping point in the sequence of cycles at which operator intervention is required before the sequence is resumed.
2. Discussion of Prior Art
There are three major cycles in the operation of a round baler. These are forming the bale, wrapping the bale, and ejecting the bale. Typically, in the forming cycle the operator lowers the crop pickup at the front edge of the baler, starts the bale forming belts and drives the tractor forward so that the crop pick-up can lift the crop into the baler. As the baler moves forward a hay bale is created within the bale chamber. If the operator drives straight while traversing the windrow an uneven bale may be created with more material in the center or one side of the bale than in the remainder of the bale. To prevent this uneven bale formation, the operator follows a driving pattern that includes spending time to the right of the center of the window and time to the left of center. Once the bale is fully formed, the forming cycle is complete and the wrapping cycle may begin. During the wrapping cycle forward motion along the windrow is stopped and either mesh or twine are wrapped around the bale using an automated mechanism associated with the bale chamber. Once wrapping is complete, the bale ejecting cycle begins in which the bale chamber is opened, typically by lifting a tailgate, and the wrapped bale falls or is pushed out of the bale chamber.
The prior art includes round balers that are fully automatic with respect to the three major cycles of operation. That is, an operator begins the process and drives a tractor towing the baler, but the baler automatically proceeds from one cycle to the next while signaling the operator with status information.
The prior art also includes a baler commercialized by AGCO Corporation of Duluth, Ga. that is semi-automatic with respect to these three cycles, i.e., after the forming cycle is complete, the machine does not automatically advance to the wrapping cycle but instead requires the operator to intervene and manually signal the baler to begin the next cycle. Once the operator has intervened in this manner, the AGCO baler completes the wrapping cycle, automatically moves into the ejecting cycle, and after completing the ejecting cycle automatically moves into the forming cycle. Of course, although the machine is in the forming cycle, no baling actually occurs unless the operator is driving the baler along the windrow so that material is picked up by the baler and formed into a bale.
An advantage of this baler is that in some instances the operator would prefer that the baler not proceed immediately to the wrapping cycle to allow time to ensure an even bale after he receives the signal that the bale is fully formed. By not automatically proceeding to the wrapping cycle the operator has time to drive from one position in the row to a different position in the row to even out the bale. The operator signals the baler to enter the wrapping cycle once the evening out process has been completed. Furthermore, depending on field conditions and other factors, the operator may have a need to postpone the wrapping cycle after the forming cycle is completed. However, this baler when operating in semi-automatic mode does not permit the operator to postpone the ejecting cycle.
Another prior art semi-automatic baler commercialized by Deere & Company of Moline, Ill. places the point of operator intervention between the wrapping cycle and the ejecting cycle so that the operator must affirmatively signal the baler at the conclusion of the wrapping cycle before the baler will commence the ejecting cycle. An advantage of this baler is that the operator can postpone the ejecting cycle if he so chooses. For example, fully formed bales can weigh in excess of 1000 pounds and it may not be safe to eject the bale automatically where the baler sits. If the baler is sitting on an incline it may not be safe to have a one thousand pound bale rolling down a hill. However, the Deere baler does not permit the operator to postpone the wrapping cycle if so desired by the operator.
SUMMARY OF THE INVENTION
The present invention solves the above described problems and provides a distinct advance in the art of round balers. More particularly, the present invention provides a semi-automatic round baler in which the manual intervention by which the operator commences the next cycle can be selectively placed either between the forming cycle and the wrapping cycle, or between the wrapping cycle and the ejecting cycle. The present invention can be implemented in hardware, software, firmware, or a combination thereof. In a preferred embodiment, certain aspects of the invention are implemented with a computer program in association with a computer or microcontroller.
The invention broadly includes a round baler and a controller that an operator can program to operate in one of two semi-automatic modes. The operator can select either the “auto kick” or the “auto wrap” mode. If the operator selects the auto kick mode, at the conclusion of the forming cycle the baler will stop and await the operator's signal to continue by pressing a console key, or a remote control switch. Once the operator has signaled to continue, the baler will wrap the bale and will immediately proceed to the ejecting cycle. If the operator selects the auto wrap mode, the baler will automatically enter into and complete the wrapping cycle following completion of the forming cycle. At the conclusion of the wrapping cycle in the auto wrap mode, the baler will wait until the operator manually depresses the console key or the remote switch before ejecting the completed bale.
REFERENCES:
patent: 4656931 (1987-04-01), Van Den Bossche et al.
patent: 4674403 (1987-06-01), Bryant et al.
patent: 4855924 (1989-08-01), Strosser et al.
patent: 44 42 479 (1995-01-01), None
New Holland Roll-Belt Round Balers 634 644 654 664 (p. 1-24 Including Front and Back Covers) 1995.
Davis Robert D.
Waggoner Robert J.
AGCO Corporation
Hovey & Williams, LLP
Rada Rinaldi I.
Weeks Gloria R
LandOfFree
Round baler with semi-automatically sequenced operating... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Round baler with semi-automatically sequenced operating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Round baler with semi-automatically sequenced operating... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3098808