Ships – Steering mechanism – Fluid pressure
Reexamination Certificate
2000-03-31
2002-04-02
Morano, Joseph (Department: 3617)
Ships
Steering mechanism
Fluid pressure
C440S040000
Reexamination Certificate
active
06363874
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to electric propulsion units for recreational watercraft. More specifically, the present invention relates to propulsion units which mount in a forward area of the watercraft.
2. Description of the Related Art
Recreational watercraft are typically used for a variety of activities such as fishing, cruising, water skiing, knee-boarding, tubing and like sports. To move the watercraft across the water, an adequate amount of thrust is necessary depending on the particular activity. The thrust may be provided by various types of propulsion systems, both engine-driven and electric-motor driven. Electrical and mechanical propulsion systems generally include outboard and inboard engine driven propeller systems.
Internal combustion engine drives are generally disposed at the rear of a watercraft at a transom, either outboard or inboard. Outboard motors are typically secured to the transom of a boat, while inboard motors have a propeller extending through the transom from an internal combustion engine disposed within a housing of the hull. Both outboard and inboard motors are particularly useful for high-speed and highly responsive navigation of the watercraft. Drawbacks of such drives, however, include their noise levels, exhaust emissions, relative complexity, size and weight.
Electric propulsion systems for pleasure craft are typically referred to as trolling motors or electric outboards. These systems include an electric motor which can be rotated at various speeds to drive a prop. The prop produces a thrust which is directed by proper orientation of the propulsion unit. In conventional trolling motors, for example, a control head may be manually oriented to navigate the boat in a desired direction, or a remote control assembly may be provided for rotating a support tube which holds the propulsion unit submerged during use. While certain relatively minor differences may exist, the term electric outboard is typically employed for the conventional trolling motor design, but with a horsepower range elevated with respect to the conventional trolling motor, such as in excess of 1 horsepower.
While the conventional trolling motor provides quiet and reliable navigation, extremely useful for certain activities such as fishing, there is considerable room for improvement. For example, conventional trolling motors are typically after-market, add-on units designed for mounting on the deck of a watercraft. Such units are typically supported by a mounting structure, a wide range of which may be obtained commercially. These structures allow for relatively straightforward deployment of the motor to position the propulsion unit below the waterline alongside the watercraft, and retraction of the unit for stowage on the deck. The entire motor and mount, however, generally remain securely fixed to the deck, both during use and when stowed. The resulting structure is somewhat cumbersome and occupies useful space on the deck, limiting access to the water in the area of the motor mount. Moreover, while much energy and creativity have been invested in Eboat designs, the aesthetics of the hull may be somewhat impaired by the trolling motor and mount positioned on the deck, typically adjacent to the bow. Furthermore, conventional trolling motors only provide thrust at a point around the perimeter of a watercraft, thereby allowing external forces such as wind to force the watercraft out of alignment with the desired direction of movement across the water.
SUMMARY OF THE INVENTION
The present invention provides a propulsion system for a watercraft to address these drawbacks. The system includes a rotatable thrust assembly, which is adapted for mounting on a hull, such as forward a transverse centerline of the watercraft. The system includes a prop or props coupled to, and rotatable with, the rotatable assembly. The prop is further coupled to a power transmission drive train, which is then drivingly coupled to a drive motor. The rotatable assembly is also coupled to an angular drive configured for orienting the prop to produce a thrust in a desired direction during operation.
In accordance with other aspects of the present invention, a propulsion system for a watercraft includes a recessional housing configured for mounting on a hull forward a transverse centerline of the watercraft. The system also includes a rotatable body, which is mounted in the recessional housing. The system further includes a prop coupled to, and rotatable with, the rotatable body. The prop is further coupled to a power transmission drive train, which is then drivingly coupled to a drive motor. The rotatable body is also coupled to an angular drive configured for orienting the prop to produce a thrust in a desired direction during operation.
The present techniques also offer a watercraft that includes a hull having a recessional housing forward a transverse centerline of the watercraft. A rotatable body is fixedly mounted in the recessional housing. A prop is coupled to, and rotatable with, the rotatable body. The prop is further coupled to a power transmission drive train, which is then drivingly coupled to a drive motor. The rotatable body is also coupled to an angular drive configured for orienting the prop to produce a thrust in a desired direction during operation.
REFERENCES:
patent: 2214656 (1940-09-01), Briggs
patent: 3517633 (1970-06-01), Wanzer
patent: 3763819 (1973-10-01), Mays
patent: 3835806 (1974-09-01), Rice
patent: 4030442 (1977-06-01), White
patent: 4074652 (1978-02-01), Jackson
patent: 4175511 (1979-11-01), Krautkremer
patent: 4278431 (1981-07-01), Krautkremer et al.
patent: 5131875 (1992-07-01), Lee
patent: 5171173 (1992-12-01), Henderson et al.
Bombardier Motor Corporation of America
Fletcher Yoder & Van Someren
Morano Joseph
Wright Andrew
LandOfFree
Rotational electric bow thruster for a marine propulsion system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotational electric bow thruster for a marine propulsion system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotational electric bow thruster for a marine propulsion system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2901959