Prime-mover dynamo plants – Electric control – Traction
Patent
1997-02-21
1998-03-10
Nguyen, Kiet T.
Prime-mover dynamo plants
Electric control
Traction
250295, B01D 5944
Patent
active
057264481
ABSTRACT:
A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.
REFERENCES:
patent: 4221964 (1980-09-01), Schlereth et al.
patent: 5495108 (1996-02-01), Apffel, Jr. et al.
Alber, G.M. and Marshall, A.G. Fourier Transform Ion Cyclotron Resonance of Highly-charged Atomic Ions. Physica Scripta, vol. 46, pp. 598-602, 1992.
Campbell, Victoria, Guan, Ziqiang, Vartanian, Victor H. and Laude, David A. Cell Geometry Considerations for the Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Remeasurement Experiment. Anal. Chem., vol. 67, pp. 514-518, 1991.
Caravatti, P. and Allemann, M. The `Infinity Cell`: a new Trapper-ion Cell With Radiofrequency Covered Trapping Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Organic Mass Spectrometry, vol. 26, pp. 514-518, 1991.
Grosshans, Peter B. and Shields, Patrick J. Comprehensive theory of the fourier transform ion cyclotron resonance signal for all ion trap geometries. J. Chemical Physics, vol. 94(8), Apr. 15, 1991.
Grosshans, Peter B., Chen, Ruidan, Limbach, Patrick A. and Marshall, Alan G. Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Process, vol. 139, pp. 169-189, 1994.
Guan, Shenheng, Gorshkov, Michael V., Marshall, Alan G. Cicularly polarized quadrature excitation for Fourier-transform ion cyclotron resonance mass spectometry. Chemical Physical Letters, vol. 198, No. 1, 2, pp. 143-148, 1992.
Guan, Shenheng and Marshall, Alan G. Filar ion cyclotron resonance ion trap: Spatially multiplexed dipolar and quadrupolar excitation for simultaneous ion axialization and detection. Rev. Sci. Instru., vol. 66(1), pp. 63-66, Jan. 1995.
Hatakeyama, Rikizo, Sato, Naoyuki and Sato, Noriyoshi. An efficient mass separation by using traveling waves with ion cyclotron frequencies. Nuclear Instruments and Methods in Physics Research, vol. B70, pp. 21-25, 1992.
Hiroki, s., T. Abe and Murakami Y. Influence of the fringing field length on the separated .sup.4 He/D.sup.2 peak shape of a high-resolution quadrupole mass spectrometer. International Journal of Mass Spectrometry and Ion Processes, vol. 136, pp. 85-89, 1994.
Limbach, Patrick L., Grosshans, Peter B. and Marshall, Alan G. Harmonic enhancement of a detected ion cyclotron resonance signal by use of segmented detection electrodes. International Journal of Mass Spectrometry and Ion Processes, vol. 123, pp. 43-47, 1993.
Marshall, Alan G. and Schweikhard, Lutz. Fourier transform ion cyclotron resonance mass spectrometry: technique developments. International Journal of Mass Spectrometry and Ion Processes, vol. 118/119, pp. 37-70, 1992.
Marto, Jarrod A., Marshall, Alan G. and Schweikhard, Lutz. A two-electrode ion trap for Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, vol. 137, pp. 9-30, 1994.
Nikolaev, E.N., Frankevich, V.E. and Aberth, W. The resolution obtained from low energy ion scattering using an ion cyclotron resonance spectrometer. International Journal of Mass Spectrometry and Ion Processes, vol. 130, pp. 9-14, 1994.
Sugihara, Ryo and Yamanaka, Kaoru. Nonlinear Ion Cyclotron Resonance in Electromagnetic Wave with Non-Uniform Amplitude. Journal of the Physical Society of Japan, vol. 63, No. 12,pp. 4386-4395, Dec. 1994.
Wang, Mingda and Marshall, Alan G. Laboratory-Frame and Rotating-Frame Ion Trajectories in Ion Cyclotron Resonance Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, vol. 100, pp. 323-346, 1990.
Xiang, Xinzhen, Grosshans, Peter B. and Marshall, Alan G. Image charge-induced ion cyclotron orbital frequency shift for orthohombic and cylindrical FT-ICR ion traps. International Journal of Mass Spectrometry and Ion Processes, vol. 125, pp. 33-43, 1993.
Fuerstenau, Stephen D. and Benner, Henry W. Mollecular Weight Determination of Magadalton DNA Electrospray Ions Using Charge Detection Time-Of-Flight Mass Spectrometry. Rapid Communication in Mass Spectrometry, vol. 9, pp. 11528-11538, 1995.
Chutjian Ara
Smith Steven Joel
California Institute of Technology
Nguyen Kiet T.
LandOfFree
Rotating field mass and velocity analyzer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotating field mass and velocity analyzer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotating field mass and velocity analyzer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-141888