Rotatable workpiece support including cyclindrical workpiece...

Radiant energy – Irradiation of objects or material – Irradiation of semiconductor devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S492200, C250S492300, C250S398000, C250S400000, C250S440110, C250S442110

Reexamination Certificate

active

06222196

ABSTRACT:

SUMMARY OF THE INVENTION
The present invention relates generally to an ion beam implanter and, more particularly, to an ion beam implanter including a rotatable workpiece support having cylindrically shaped workpiece support surfaces to minimize the variation in the angle of incidence of the ion beam across the semiconductor wafer workpieces
BACKGROUND OF THE INVENTION
Ion implantation has become the technology preferred by industry to dope semiconductor wafers with impurities in the large scale manufacture of integrated circuits. Ion dose and ion energy are the two most important variables used to define an implant step. Ion dose relates to the concentration of implanted ions for a given semiconductor material. Typically, high current implanters (generally greater than 10 milliamps (mA) ion beam current) are used for high dose implants, while medium current implanters (generally capable of up to about 1 mA beam current) are used for lower dose applications.
Ion energy is used to control junction depth in semiconductor devices. The energy levels of the ions comprising the ion beam determine the depth of implantation of the ions into the wafer workpieces. High energy processes such as those used to form retrograde wells in semiconductor devices require implants of up to a few million electron volts (MeV), while shallow junctions may only demand energies below I thousand electron volts (1 KeV).
The continuing trend to smaller and smaller semiconductor devices requires a ion beam beam line construction which serves to deliver high beam currents at low energies. The high beam current provides the necessary dosage levels, while the low energy levels permit shallow implants. Source/drain junctions in semiconductor devices, for example, require such a high current, low energy application.
In high current and high energy implanters, semiconductor wafer workpieces are mounted near the periphery of a rotatable workpiece support. As the support rotates, the workpieces pass through the ion beam and are implanted with ions. When implanting wafers, if the angle of incidence of the ion beam (implantation angle) is perpendicular or normal to the surface of the workpiece, an effect called “channeling” has been found to occur. When channeling occurs, the ions of the ion beam pass into the crystal lattice structure of the semiconductor wafers and achieve greater penetration depth than is normally the case. The effective tilt angle (ETA) is defined as the angle between the ion beam and a ray extending perpendicularly from the surface of the wafer workpieces. An ETA=0 degrees defines a channeling implantation.
If channeling not desired, the effective tilt angle ETA is increased slightly, usually in the range of 1-10 degrees so that the ion beam beam line is not exactly perpendicular to the workpiece surface. This is accomplished by tilting the workpiece support with respect to the ion beam beam line direction.
In some implantation applications, channeling is useful. However, in such channeling applications, that is, ETA=0 degrees, implantation depth is very sensitive to implantation angle variation across the workpiece. As the implantation angle varies across the workpiece, the depth of ion penetration into the semiconductor wafer workpieces changes markedly.
If implantation depth is to be accurately controlled, the implantation angle must not change significantly over the surface of the wafer. In some applications, for example, in channeling implants the maximum allowable variation in the implantation angle is 0.2 degrees.
However, current art implanters wherein the workpiece support rotates and the workpieces lie flat on a flat workpiece support pad, a variation in the implantation angle of over 1 degree with a 300 millimeter (mm.) (30 cm.) diameter wafer workpiece at an ETA=0 degrees (channeling implant) is usual.
What is needed is a wafer support apparatus that minimizes the variation of implantation angle over a range of effective tilt angles ETA from 0 degrees (channeling implantation) and greater (non channeling implantation).
SUMMARY OF THE INVENTION
The present invention concerns an ion beam implanter for treating a plurality of semiconductor wafer workpieces is disclosed. The ion implanter includes an implantation station defining an implantation chamber and further includes an ion source for generating the ion beam and beam forming and directing apparatus defining an interior region through which the ion beam passes from the ion source to the implantation station. A pump system is provided for pressurizing and depressurizing the interior region.
The implanter includes a novel rotatable support disposed in the implantation chamber for supporting a plurality of wafer workpieces. The rotatable support includes a hub adapted to be rotated about an axis of rotation substantially parallel to a direction of an ion beam beam line entering the implantation chamber. The rotatable support further includes a plurality of wafer support members adapted to be attached to the hub, each wafer support member adapted to support at least one of the wafer workpieces. Each wafer support member includes an attachment structure for affixing the support member to the hub and a wafer support pad extending from the attachment structure and passing through the beam line as the hub rotates.
The wafer support pad has a wafer support surface that includes a concave portion being concave in shape. In one preferred embodiment, the concave portion is cylindrical and a central axis of an imaginary cylinder corresponding to the cylindrically shaped concave portion passes substantially through an axis of rotation of the hub. Each wafer support member further includes a clamp for releasably securing a wafer workpiece to the wafer support pad. Upon rotation of the hub at a predetermined angular velocity, the workpiece conforms to a shape of the concave portion due to a component of centrifugal force normal to a surface of the wafer support surface.


REFERENCES:
patent: 4700077 (1987-10-01), Dykstra et al.
patent: 4831270 (1989-05-01), Weisenberger
patent: 4911103 (1990-03-01), Davis et al.
patent: 5218209 (1993-06-01), Takeyama
patent: 5373164 (1994-12-01), Benveniste
patent: 5916824 (1999-06-01), Mayazumi et al.
patent: 0 458 422 A2 (1991-11-01), None
patent: 0 724 284 A2 (1996-07-01), None
patent: WO 88/02920 (1988-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotatable workpiece support including cyclindrical workpiece... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotatable workpiece support including cyclindrical workpiece..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotatable workpiece support including cyclindrical workpiece... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2543494

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.