Rotatable connection system for crane boom sections

Traversing hoists – Having means facilitating assembly or disassembly – Of boom sections

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C403S157000, C052S749100

Reexamination Certificate

active

06213318

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to lift cranes, and more particularly to rotatable connection systems for sectional boom members for cranes and the like.
Large capacity lift cranes typically have elongate load supporting boom structures comprised of sectional boom members secured in end-to-end abutting relationship. Predominantly, each of the sectional boom members is made of a plurality of generally disposed lacing or lattice elements. The terminal end portions of each chord are generally provided with connectors of one form or another to secure abutting boom segments together and to carry compressive loads between abutting chords. Typical connectors comprise male and female lugs secured by a pin carrying compressive loads in double shear.
An example 220 foot boom may be made of a 40 foot boom butt pivotally mounted to the crane upper works, a 30 foot boom top equipped with sheaves and rigging for lifting and supporting loads, with five sectional boom members in between: one 10 feet in length, one 20 feet in length and three 40 feet in length. Such an example boom has six boom section connections. Typically each section has four chords, and hence four connectors, making a total of 24 connectors that must be aligned and pinned to assemble the boom.
Large capacity cranes require very large boom cross sections. As a result, even when the boom segments are laying flat on the ground, the pin connectors between the top chords are typically eight feet or higher off the ground. The rigging personnel must either move a step ladder to each pin location or stand and walk along the top of the boom to reach the top connectors.
A 40 foot long sectional boom member may weight over 5,000 lbs. Thus, an assist crane is required to lift the boom member. One rigger usually then holds the suspended boom section in general alignment while a second rigger uses a large hammer (10 or 15 lbs.) to manually drive the pin, which typically has a long taper, into position. In the prior art, the pins connecting the boom sections are generally used to carry the compressive loads between chords. As a result, the pins have a tight fit, further increasing the difficulty in assembling the boom. As such, it may take three men (a crane operator and two riggers) four or more hours to assemble the example 220 foot boom. Where the crane is moved frequently, the costs to assemble and disassemble the boom may exceed the cost to lift and position the load for which the crane is used.
Efforts have been made to design sectional boom members with quick-connect systems. For example, U.S. Pat. No. 3,511,388 discloses a pin connection system for boom structures having tubular chord members. Tapered male lug members are disclosed for insertion, presumably with some rapidity, into female sockets. The lugs are then held together by a pin. Compressive loads are carried by machined surfaces on the perimeter of the lugs, slightly larger in width than thickness of the walls of the tubular members.
U.S. Pat. No. 5,082,128 discloses a quick-connect system where the connectors on the top chords have hook-like male lugs and female lugs with spaced members capturing a horizontal pin between them.
FIGS. 10
a
-
10
c
show how the hook-shaped member can be fit in place while the boom sections are not parallel, with a rotary motion (about the axis of the pins) bringing the boom sections into parallel alignment and mating up bearing surfaces on the end of each male lug with the inner face of each female lug. The horizontal neutral axis of the top chords (which appear to be tubular in cross-section) intersect the centerline of the pin, but does not intersect the compressive load bearing surface, nor is the compressive load bearing surface symmetrical about the horizontal neutral axis.
It would be preferable if compressive load bearing surfaces on connectors were symmetrical about the horizontal and vertical neutral axes of the chords to which they were attached. This would allow compressive loads to be transmitted through the connectors without creating bending moments in the chords. Also, chords having a right angle cross-section are frequently used on boom sections, and quick-connect systems for such chords would be useful.
U.S. Pat. No. 5,199,586 discloses quick-connect sectional boom members that have compressive load bearing surfaces that are not only symmetrical about the vertical and horizontal neutral axes of the chords to which they are attached, but are intersected by a line that is formed by the intersection of these neutral axes.
While the design of the connector of
FIGS. 16-18
of the '586 patent have met with commercial success, and allow quick boom assembly when the boom is being constructed in a horizontal fashion, there are times when boom construction would be better carried out in a vertical fashion. For example, when there are job site space constraints, it is not always possible to construct a long main boom and a luffing jib boom on the ground in a layout position. Under these conditions, it is desirable to construct the main boom and just the luffing jib boom butt and luffing jib struts. These components are then boomed up until the luffing jib boom butt hangs vertical. It would be desirable if the next section of luffing jib boom could be brought in and connected while the connection points are as close to the ground as possible. To achieve this, the next section of boom should be oriented horizontally, and the top chord connection made. To do this, it is necessary to have a connection system that will then allow the boom section to rotate 90° about the top chord section while the luffing jib is further raised and the new section of boom is allowed to swing under the luffing jib boom butt into vertical alignment. Thus, an easy, quick-connect system for boom sections that allows for top chord connections that can rotate through 90° would be a great improvement.
SUMMARY OF THE INVENTION
A rotatable connection system for boom sections has been invented. With the invention, boom sections can be added to a boom being constructed in either a horizontal layout configuration or in a vertical configuration, such as adding a boom section onto a hanging luffing jib boom butt.
In a first aspect, the invention is a crane having a boom with a rotatable boom section connection system, the crane having an upper works rotatably mounted on a lower works, the upper works including a load hoist winch, the boom comprising at least a first and second boom section each with a longitudinal axis and a first and second end, the second end of the first section being coupled to the first end of the second section; at least one male connector on the second end of the first section coupled to a female connector on the first end of the second section; the male connector comprising a base and a protrusion, the base and protrusion each having an extension in a direction generally perpendicular to the longitudinal axis of said first boom section, the extensions and protrusion defining a socket; the female connector comprising two protrusions spaced apart at a distance such that the protrusion of the male connector fits between the two protrusions, the female connector further comprising a coupler connected to at least one of the protrusions and extending toward the other protrusion and fitting within the socket of the male connector; and a retainer connected between the extensions of the male connector preventing the male and female connectors from uncoupling.
In a second aspect, the invention is a sectional boom member with a rotatable connection system comprising a boom section having a longitudinal axis, a first end and a second end, and each end having at least three connectors, the at least three connectors of said first end designed to mate with three connectors of a second end of an identical boom section; a first of said at least three connectors on said second end comprising a male connector having a base and a protrusion, and shoulders on the base on at least two sides of said protrusion, the protrusion and ba

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotatable connection system for crane boom sections does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotatable connection system for crane boom sections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotatable connection system for crane boom sections will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2455971

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.