Rotary two axis expansible chamber pump with pivotal link

Rotary expansible chamber devices – With changeable working chamber magnitude – Intermittently accelerated and receding members rotate in...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C418S029000, C418S031000, C418S037000, C418S137000, C418S138000, C418S225000, C418S241000

Reexamination Certificate

active

06659744

ABSTRACT:

ENVIRONMENTAL BENEFITS
Although this invention involves a simple change in the function of parts of common machines, this can result in large benefits in energy consumption due to increased efficiency.
In general liquid pumping, the industry is dominated by centrifugal pumps. Although these pumps are “user friendly” and convenient, they are notoriously inefficient, especially at higher head pressures. Variable displacement positive displacement pumps can be much more efficient. Run as hydroelectric motors, these devices can utilize the potential energy only on demand with very high efficiency and also provide the utilization of low head sources.
The use of these devices as combustion engines could be very productive, especially as automotive engines. An improvement in efficiency in this area can have a large impact on the environment through the reduction of greenhouse gases.
The use of the heat engine as an air cycle Brayton refrigeration system could benefit the ozone layer by replacing organic refrigeration with air.
This invention relates to expansible, chamber positive displacement pumping devices having two elements rotating on different parallel axes and linked together by a third element which is also rotary about it's own axis. It is a criteria of this in invention that all three elements are dynamnically balanced about each respective axis. This will allow dynamically balanced high speed operation. Generally the three elements are:
A drive shaft -rotor element, an abutment element rotating about a central journal, in a housing and a pivoting element with links the two previous elements together, said pivot element travelling about a circular orbit around the axis of the shaft-rotor element. Several types of pumping devices may be devised using this formula; the devices are: vane pumps and motors of several distinct types, rotating radial piston pumps, rotating pistons in an annular groove, rotating elements in a groove of constant cross section, and rotating rollers in an annular groove. The latter is a simpler pump in that the roller serves both as the second and third element simultaneously so that there is only the shaft-rotor and the roller as moving parts. This is extremely simple pump.
In looking at this invention as compared to existing technology, the primary difference is that the abutments are attached to a hub at the center of the chamber, or constrained to circular motion coaxial with the chamber, whereas in other pumps, such as vane pumps, the abutments move in radial slots in the rotor-shaft element which is a simple geometry, but is flawed in that the vanes are always dynamically out of balance, and the sealing tip of the vanes is always a line contact with the cam chamber wall. By constraining the elements, such as vanes to a circular path about the chamber axis, the vanes need not touch the chamber surface but maintain a parallel tolerance seal at all times. So that the surface is not a cam.
The system is dynamically balanced and may move at higher rotational speeds. The difference here, is that in order to achieve this, the vanes cannot move in radial slots in the rotor but must move in a pivoting motion, not perpendicular to the axis of the rotor, but perpendicular to the chamber. Thus vanes, pistons, or rollers must move with circular motion which is not about the axis of the rotor, but about the axis of the chamber, This produces the precise motion but also requires the pivoting link. Generally, the pivoting link moves at a constant angular velocity with the rotor but with a changing radial distance from the axis of the rotor. With respect to the central journal, the pivot element travels at a constant radial distance from the axis of the journal, but with changing angular velocity. This geometry allows a very simple method of obtaining variable displacement. Two housing elements are fastened with the ability to slide, having one housing have shaft rotor, the other have the chamber with central journal so that as the axes are displaced, the displacement changes. This is especially valuable for increased performance and efficiency in the pumping of liquids.
The concept works for rotating radial piston technology. In this case, the pistons are always rotating about the central hub at a fixed radius but also rotating at a constant angular velocity with the rotor, again with the pivot link required. The pivot link becomes the cylinder in which the piston moves, the pivot link orbiting the rotor shaft axis, and the piston orbiting the central hub journal. In the pumping of liquids, this may allow the fluid to act directly upon rotor and hub and take almost all pressure load off the piston or pivot cylinder. Further, the device again may be variable displacement, this time by only shifting the axis of central hub. As a further benefit, the system is very simply rotary ported on the periphery of the rotor and can very simply be pressure balanced.
As a pneumatic device, the system has benefits over reciprocating technology which has two operational boundaries. The lower rpm boundary is the leakage which decreases linearly with increasing rotational speed. In this, the two technologies are equivalent. The second boundary of reciprocating engines is caused by F=ma, or that the weight of the parts increase with rotational velocity so as to cause increased friction and wear and loss of efficiency and power. In this case, the two technologies are not equivalent.
Provided each element (shaft-rotor, pistons, pivot cylinder) are dynamically balanced (about their own axis of rotation), there are no increased forces caused by increased rotational velocity. What this means is that this device becomes increasingly efficient (less leakage) with velocity rather tan less efficient. A third factor is that increased velocity causes aspiration problems in reciprocating devices due to valves springs and also size of valves not allowing air flow at velocity. In this technology, no valves are required either for intake or discharge. In the case of use as a heat engine, the device may run as a two cycle but is probably better as a four cycle, as the expansion volume may be made larger that the compression volume for higher efficiency. In this case, the compression chamber must transfer the gas into the expansion chamber through either a rotary valve or through a mechanical valve run off the center hub. Also an injector may be operated in the same way. The compression piston and expansion piston may be one part on the journal, and also include the valve and injector in the same part, and the pivot cylinder may have both compression and expansion in the same part. Thus a very simple engine can be rotor-shaft having a single pivot cylinder, and a single piston element rotating upon center journal I, and having simply open rotary ports. Thus the whole engine consists of three moving parts plus a housing. Furthermore, the center of the device constitutes a liquid pump between piston and rotor so as to accomplish both lubrication and cooling. This pumping zone may have duplex ports so that one port is pumping cooling fluid but as the chamber becomes small, the port closes and it pumps high pressure lubrication to the bearing surfaces.
In conclusion, this technology is similar and parallel with other existing technologies, but it is a simpler and more efficient way to accomplish the work, either in liquid pumping or in pneumatic applications. It can be applied to extremely wide range of products. It can also open some new doors to advanced systems, especially in fluid power transmission and also in energy conversion.
BACKGROUND; PRIOR ART
Having designed patented and built many expansible chamber pumps, it came to my attention that although my fixed displacement pumps were efficient, when load varied, the drive motor suffered in efficiency. Thus my objective was to invent a pressure regulated expansible chamber pump which would raise the efficiency of the combined pump and drive motor system. The objective was to encompass general water pumping as well as fluid power. A

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotary two axis expansible chamber pump with pivotal link does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotary two axis expansible chamber pump with pivotal link, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary two axis expansible chamber pump with pivotal link will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3184043

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.