Abrading – Rigid tool – Rotary cylinder
Reexamination Certificate
1999-09-28
2001-10-30
Banks, Derris H. (Department: 3723)
Abrading
Rigid tool
Rotary cylinder
C451S541000, C451S548000
Reexamination Certificate
active
06309292
ABSTRACT:
FIELD OF THE INVENTION
Our present invention relates to a rotary tool for surface treatment and, more particularly, to a rotary tool for removing material from a surface, especially without adversely affecting other surface properties.
BACKGROUND OF THE INVENTION
Rotary tools for surface treatment have in the past comprised an annular disk of an elastic material, frequently referred to as a wheel, for the removal of adhesive residues and adhering plastic foils from metal surfaces. The wheel or disk mounted in a hand-held apparatus including a pneumatic or electric motor, was pressed against the article whose surface was to be treated so that the adhesive residue and foil, for example decorative strips adhesively bonded to the metal surface, advertising material or labels of synthetic resin foils, could be abraded away.
Frequently it is important that such substances and materials be removed without detriment to the surface finish of the metal body and especially to a lacquer coating which may be applied thereto. That is the case, for instance, for the removal of such residues and materials from automobile bodies.
Other rotary tools have been used for a variety of surface treatments and include annular disks of cylindrical, conical or other round shapes and have also been composed at least in part of a yieldable material such as rubber or a rubber-like synthetic resin.
A common problem with the known rotary tools is that they can be operated only at relatively slow speeds, for example 1500 RPM. Such speeds are unsatisfactory since they make the use of the tool time-consuming and, consequently, expensive. The prior art rotary tools utilized for the purposes described tend to become unround readily and, because they are relatively massive bodies, cannot resume their original configurations after deformations and tend often to be residually deformed.
Another problem arising with such prior art tools is the high heat development in use. The working surface may be subjected to excessively high temperatures and can be damaged. Furthermore, the surfaces tend to pick up flakes of lacquer, adhesive residues and the like when the tool is used to remove such residues from lacquered surfaces and these must be removed if continued use of the tools is desirable.
OBJECTS OF THE INVENTION
It is therefore the principal object of the present invention to provide an improved rotary tool for the purposes described which will be free from the drawbacks of the earlier tools used for these purposes.
More particularly, it is an object of the invention to provide a rotary tool which can be operated at extremely high rotary speeds, which maintains its roundness and hence the precision of operation desired, without damaging the surface to be treated or the active surface of the tool so that the overall operating efficiency is increased.
SUMMARY OF THE INVENTION
These objects are attained, in accordance with the invention in a rotary tool for the removal of adhesive residues, synthetic resin foil and the like from the surface of an article, especially lacquered metal surfaces like the surface of an automobile, without detriment to that surface. The tool can comprise:
an annular disk of an elastomeric material selected from the group which consists of rubber and rubber-like synthetic resins having an outer crown and an inner crown, the outer crown having an annular array of outwardly projecting elastically bendable teeth adapted to abrade material from the surface, the inner crown having a plurality of inwardly projecting formations; and
a rotatable disk holder engaging the formations for rotatably entraining the disk.
Thus the tool of the invention has as its basis an annular disk or disk-shaped body of an elastomer, namely, rubber or a rubber-like synthetic resin and which is formed unitarily with both an outer crown and an inner crown.
The outer crown is formed by a circumferential array of equispaced teeth which are elastically bendable and extend outwardly from the disk. This tooth crown is thus formed with interstices between the teeth and the teeth can have outwardly converging flanks so that the interstices widen outwardly as well. The inner crown can be provided with inwardly extending formations and serves for connection of the disk to a rotatably-driven disk holder. The latter may be composed of a pair of disk-shaped members which have axially-extending projections engaging in the formations from opposite sides and thus can together form a socket or passage for the drive shaft.
The result is a tool which, because of the bendability of the individual teeth, ensures an especially clean removal of adhesive residues and foil from the surface of the metal object, even when the tool is rotated at high speeds which can amount to, for example, 3000 RPM and more.
Surprisingly, the roundness of the tool is maintained, presumably because the teeth spring back to their original positions more easily than the restoration of the deformation of a massive annular body utilized for a similar purpose. The tool of the invention has been found to operate with a significantly higher efficiency than conventional tools and to have a significantly higher useful life. This may be due at least in part to the fact that the pressure applied by the teeth and to the teeth during the process may be significantly lower than the pressure at the periphery of a conventional, continuous tool for removal of adhesive residues and synthetic resin foil from lacquered metal surfaces at the same rates. There is a surprising air effect with the tool of the invention which is due to the presence of the gaps between the teeth and, especially at high speeds ensures cooling and/or the reduction of friction heat generation. There is, as a consequence, reduced danger of damage to the tool and to the treated surface. Indeed, the development of dangerously high temperatures at the tool can be entirely excluded.
According to a feature of the invention, with independent inventive significance, the abrading or erasing effect of the tool can be increased by providing at least in the peripheral sides of the two surfaces of the abrading teeth, abrasive particles which can be embedded in these surfaces or the teeth themselves or which can be applied by wetting the surfaces with an emulsion containing these particles.
The abrasive or grinding particles can be embedded throughout the teeth or throughout the outer crown and can also be embedded or stored in the interstices of the inner crown and the entire disk body.
According to another feature of the invention the abrasive or grinding particles are comprised of corundum, silicon carbide, boron carbide, boron nitride or diamond. The particle size can be between extra fine and very coarse, these terms being used in the sense that they are used for the grit of sandpaper, emery cloth and the like
An extra fine particle size of the abrasive particles or wetting emulsion containing the grinding particles can be selected for the removal of adhesive residues and foil from lacquered metal surfaces or other metal surfaces which are to remain unaffected by the treatment. Medium fine abrasive particles or particles of average particle size within the range described can be used when it is desirable to remove a lacquer from a lacquered metal surface and more coarse and up to very coarse abrasive particles can be used for descaling and rust removal of the metal or steel surfaces. The grinding emulsion can be used with or without the embedding of abrasive particles as described and the choice of the abrasive particles used, the nature of the grinding emulsion and the particle sizes will depend upon the surface treatment desired.
The teeth have flanks which converge outwardly and preferably peripheral abrasive or working surfaces which conform to circular arcs. A frustoconical tooth configuration is possible in accordance with the invention.
The formations provided along the inner periphery and forming the inner crown, preferably are angularly equispaced, e.g. spaced apart by 120°, and can include axially-extending pa
Montabaur Werner
Thomas Detlef
Banks Derris H.
Dubno Herbert
Monti-Werkzeuge GmbH
Wilson Lee
LandOfFree
Rotary tool for surface treatment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotary tool for surface treatment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary tool for surface treatment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2554217