Rotary orienting feeder

Conveyors: power-driven – Conveyor for changing attitude of item relative to conveyed... – By conveying randomly faced items and turning items to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S443000

Reexamination Certificate

active

06578699

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to article handling equipment in the form of a rotary orienting feeder, and more particularly to a rotary orienting feeder including an orienting bowl assembly having an annular outer bowl formed substantially entirely of non-metallic material, such a polymeric resin. The orienting bowl may be of composite configuration, including a polymeric resin and fibrous reinforcement or granular material.
BACKGROUND OF THE INVENTION
During processing of certain types of articles during manufacture or other processing, it is frequently necessary to orient and singulate the articles, thus facilitating their automated feed to associated processing equipment. Rather than employ a vibratory feed, these types of feeders typically utilize centrifugal force to create part article singulation and orientation. A bulk volume of articles are placed in the rotary orienting feeder (ROF), which then acts to singulate/orientate the articles as they are supplied to associated equipment or the like, with the articles arranged into a sequential stream where all the articles are typically each arranged in a single orientation. This type of technology is typically employed in automated processes, where relatively higher throughput is required, and can also be advantageously employed for handling articles in a more gentle fashion, with quieter handling of metallic articles typically achieved.
U.S. Pat. No. 4,830,172, hereby incorporated by reference, illustrates a typical rotary orienting feeder construction.
In a typical feeder apparatus, two key components of the apparatus, the feed disc and orienting bowl, are typically constructed of metallic material, either spun or cast metal. There have been certain constructions which have employed a feed disc formed from a non-metallic material, such as ultra-high molecular weight polypropylene resin. Heretofore, though, the orienting bowl of such feeder devices has typically been of metallic construction, including coated metallic material (i.e., a metal bowl coated with polyurethane, or a like resinous material).
In order to facilitate economical use of such rotary orienting feeders, the present invention contemplates an improved feeder construction, wherein the orienting bowl assembly of the feeder includes an outer bowl formed substantially entirely of non-metallic material, such as polymeric resin, which may be provided in a composite form such as by the inclusion of fibrous reinforcement or granular material. Use of such non-metallic material for the outer bowl allows a simpler, less costly, lower weight design to provide the required functionality.
SUMMARY OF THE INVENTION
A rotary orienting feeder embodying the principles of the present invention comprises a support frame, and a rotatably driven orienting bowl assembly mounted on the support frame for rotation about a bowl axis. In the illustrated embodiment, the feeder includes a bowl drive mounted on the support frame for rotatably driving the orienting bowl assembly.
The present feeder construction further includes a rotatably driven feed disc mounted on the support frame for rotation about a disc axis for transferring articles to be oriented from the disc to the bowl. The disc axis angularly intersects the bowl axis, whereby articles being oriented are transferred from the feed disc to an upper, out-turned flange of the outer bowl of the bowl assembly. In the illustrated form, a disc drive mounted on the support frame rotatably drives the feed disc independently of the orienting bowl assembly.
Containment and orientation of articles is effected by the provision of a guide fence which extends generally about the orienting bowl for guiding articles to be oriented toward a discharge of the feeder. Depending upon the specific nature of the articles to be handled, suitable tooling can be mounted along the guide fence whereby engagement with the articles being handled effects singulation/orientation.
In accordance with the present invention, the orienting bowl assembly comprises a central support structure and an outer annular bowl mounted on the support structure. The outer bowl is substantially entirely of non-metallic construction to facilitate cost-effective fabrication of the feeder apparatus.
In a current embodiment, the outer bowl of the orienting bowl assembly has been formed from a suitable polymeric material. It is within the purview of the present invention that the outer bowl be formed as a composite construction, such as including polymeric resin with fibrous reinforcement, or polymeric resin with the inclusion of granular material (such as for creating a roughened interior for the bowl). As will be evident, other various, suitable non-metallic materials may be employed. The use of such materials facilitates formation of a simpler, lower cost bowl assembly, which can be of a lighter weight in construction for ease of operation. The non-metallic material from which the bowl is formed can be selected depending upon the particular types of articles to be handled, such as to exhibit chemical resistance, for example. In comparison to typical metallic constructions, the present invention facilitates ease of integration of orienting tooling features, and avoids the need for special coatings for special part handling requirements, as are sometimes necessary. Easier maintenance, and easier part stocking, due to lighter weight, are also desirably achieved.
The outer bowl of the orienting bowl assembly can be sized as required for a wide variety of applications, and is typically configured to have an inside diameter between about 10 and 72 inches. Depending on the specific application, the associated feed disc of the feeder can also be formed substantially entirely of non-metallic material or, substantially entirely of metallic material.
Other features and advantages of the present invention will become readily apparent from the following detailed description, the accompanying drawings, and the appended claims.


REFERENCES:
patent: 4007854 (1977-02-01), Ervine
patent: 4429808 (1984-02-01), Doty
patent: 4848559 (1989-07-01), Hoppman et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotary orienting feeder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotary orienting feeder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary orienting feeder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3145834

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.