Internal-combustion engines – Rotary – With transfer means intermediate single compression volume...
Reexamination Certificate
2000-07-20
2001-08-21
Denion, Thomas (Department: 3748)
Internal-combustion engines
Rotary
With transfer means intermediate single compression volume...
C418S034000, C418S036000
Reexamination Certificate
active
06276329
ABSTRACT:
This invention relates to a rotary machine adaptable for use as an engine or as a pump. The machine is however primarily intended for use as an engine.
Reciprocating internal combustion engines, for example operating on a four-stroke cycle and using petrol or diesel as a fuel are very well known.
The inefficiencies of conventional engines are also well known and significant research and development effort has been expended over more than a century in attempting to provide improved internal combustion engines. Some research has concentrated on trying to improve the basic reciprocating engine, for example by controlling combustion conditions more accurately. Other research has focused on attempting to provide an alternative structure to the basic reciprocating piston engine. The Wankel engine is an example of such a proposal, but this suffers from some of the drawbacks of conventional piston engines and has problems of its own.
Gas turbines do not suffer so much from vibration, but small turbines cannot easily be made efficient.
At present, reciprocating piston internal combustion engines are predominantly used for vehicle propulsion, and, at best, these achieve efficiencies of only about 30%. In addition, measures must be taken to reduce noise and vibration.
According to the invention, there is provided a rotary combustion machine having:
a toroidal cylinder;
a rotor mounted on a shaft for rotation about the cylinder axis;
at least two pistons mounted on the rotor, the pistons having a cross-sectional area substantially equal to the cross-sectional shape of the cylinder, the rotor and pistons being arranged so that as the rotor rotates the pistons sweep the internal volume of the cylinder;
a valve mechanism comprising two parallel contra-rotating plates, each with a cut-out at its periphery, the plates being arranged so that their plane of rotation intersects the cylinder at one point around the cylinder circumference;
a compressed gas outlet leading from the cylinder on one side of the valve mechanism;
a compressed gas chamber for receiving gas from the outlet;
a combustion passage communicating with the compressed gas chamber and leading into the cylinder on the opposite side of the valve mechanism;
a valve, for opening and closing the combustion passage independently of the valve mechanism; and
means for igniting a combustible gas mixture in the combustion passage.
The compressed gas chamber is preferably independent of the engine block in which the cylinder is formed, and the combustion passage valve is controlled by a timing mechanism driven from the shaft axis.
It is important that the valve for opening and closing the combustion passage is not tied to the valve mechanism which alternately blocks and unblocks the cylinder. This allows the combustion cycle timing to be set at any time to meet the load conditions imposed on the engine, in the most effective way.
The machine preferably includes an adjustable timing mechanism which allows the timing of the combustion passage valve operation to be varied relative to the valve mechanism. This timing mechanism may be receive input signals/drive from the rotor and/or from other engine parameters such as temperature, operator speed demand input and from other parameters which are known in relation to engine control.
Thus, with this aspect of the invention, a fluid can be positively compressed or expanded in a pressure chamber having a piston member, without requiring reciprocating motion. This can lead to a device which operates with less vibration, more smoothly, and more efficiently.
The or each piston member may be coupled to a rotatably mounted drive member so that, on rotation of the drive member, the or each piston member moves progressively through the chamber. The drive member may be driven by an external torque if the apparatus is arranged as a pump, or may be used to provide a driving torque if the apparatus forms part of a heat engine or turbine.
In one embodiment, the apparatus is arranged as a compression pump, having inlet means for introducing a fluid to be compressed into a portion of the chamber between an approaching face of the piston member and the valve member; means for inhibiting return of fluid through the inlet as the piston member is driven towards the valve member so as to compress fluid trapped in the chamber between the piston member and the valve member; and outlet means for exhausting compressed fluid from the chamber.
In another embodiment, the apparatus is arranged as a vacuum pump or turbine, having fluid introducing means for introducing a fluid to be expanded into a portion of the chamber between the valve member and a receding face of the piston member so as to expand as the piston member recedes from the valve member and means for exhausting expanded fluid from the chamber.
The compression pump and vacuum pump/turbine features may be provided together in the same apparatus. Indeed, the preferred application of the apparatus, a heat engine, incorporates the features of both the turbine and compression pump, further includes means for re-introducing the compressed fluid exhausted from the outlet means through the fluid introducing means and means for supplying heat to the re-introduced fluid. With this arrangement, the work generated by expansion of the heated reintroduced fluid is greater than the work required to compress the fluid, and so network is produced at the drive member.
Although heat could be supplied externally of the fluid, heat is preferably generated by combustion within the fluid, the fluid including oxygen (for example comprising air). Fuel may be burnt either in the chamber, as the fluid expands, or in an external chamber from which the fluid is re-introduced into said chamber, or both.
An advantage of this combustion engine is that the fuel can be burnt more progressively, rather than requiring a violent explosion as in a conventional internal combustion engine, which can enable more complete combustion, and may also reduce the unwanted combustion by-products, such as oxides of nitrogen.
The apparatus may include a fluid storage chamber for storing said compressed fluid prior to re-introduction into the chamber.
Fuel may be burnt before the fluid is reintroduced, as the fluid is reintroduced, or wholly after the fluid has been introduced, or any combination of the above. Preferably, the compressed fluid is re-introduced into the chamber via an ante-chamber in fluid communication with a portion of the chamber near the valve zone, and fuel is ignited in the antechamber.
Preferably, the apparatus (of any of the above aspects or embodiments) has two piston members substantially diametrically opposed. This arrangement offers advantages over a single piston member because no counter-weight is required for balancing. More surprisingly, the arrangement offers advantages over larger numbers of piston members, as the piston may travel almost 180 degrees around the chamber on a power stroke, allowing time to extract maximum energy from the combustion and to allow substantially complete combustion. However, three, four or even more piston members may be provided.
Most preferably, the valve member comprises at least one substantially solid plate, preferably a disk, having at least one hole therein of section corresponding to the section of the chamber, the plate being rotatably mounted about an axis perpendicular to the section of the chamber at the valve zone so that a portion of the plate extends through said section of the chamber, alignment of the or each hole with the valve-zone of the chamber providing an opening through which the or each piston member can pass to provide the open condition of the valve, and alignment of a solid portion of the plate with the valve-zone providing the closed condition of the valve.
Preferably, fluid is admitted to or exhausted from the chamber by means of one or more ducts disposed around the chamber, the ducts being positioned so that movement of the or each piston member within the chamber selectively exposes volumes of fluid disposed between the p
Bourque & Associates P.A.
Denion Thomas
Trieu Thai-Ba
LandOfFree
Rotary machine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotary machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary machine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2455261