Radiant energy – Photocells; circuits and apparatus – Optical or pre-photocell system
Reexamination Certificate
2000-01-05
2002-11-19
Le, Que T. (Department: 2878)
Radiant energy
Photocells; circuits and apparatus
Optical or pre-photocell system
C250S559380, C356S003090
Reexamination Certificate
active
06483106
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a rotary laser irradiating system for forming a reference plane used for such cases as room interior finishing work, partitioning work, etc., and in particular, to a rotary laser irradiating system equipped with a range-finder. Further, the invention relates to an object reflector used in association with the rotary laser irradiating system.
As one of the processes in room interior finishing work, partitioning work, etc, marking operation should be performed. In conventional type marking operation, a horizontal reference plane, a vertical reference plane, and a tilt reference plane or a horizontal reference line, a vertical reference line and a tilt reference line are formed by a rotary laser irradiating system. Based on the horizontal reference plane, the vertical reference plane and the tilt reference plane or a horizontal reference line, a vertical reference line and a tilt reference line, working points are projected on floor surface or wall surface at predetermined dimensions.
When marking is performed at a predetermined point on a certain reference line, a separate range-finding device has been used in the past to measure the distance, or position of the working point has been determined using a device such as a tape measure.
Also, a conventional type rotary laser irradiating system capable to form a laser reference plane is disclosed in JP-A-6-137870.
The conventional type rotary laser irradiating system, as described in JP-A-6-137870 comprises a main unit of the rotary laser irradiating system for forming a laser reference plane by irradiating laser beam and an object reflector arranged at a predetermined position and for reflecting laser beam toward the main unit of the system. The object reflector has two reflection surfaces arranged with a predetermined distance from each other, and the main unit of the system is provided with a photodetection unit, which receives the laser beam reflected from the object reflector. When the photodetection unit receives the laser beam from two reflection surfaces and two pulses are detected, a rotating direction of the laser irradiation is reversed. By repeating this reversing procedure, reciprocal operation is performed on the object reflector, and this improves visibility of the laser beam.
In the marking operation using the conventional type rotary laser irradiating system as described above, a reference line is formed on wall surface or the like by the laser beam irradiated by rotary irradiation. The predetermined working points on the reference line had to be determined manually by an operator using a range-finding device, a tape measure, etc. For this reason, complicated procedure has been required for marking operation. In a type of rotary laser irradiating system for performing reciprocal operation on the object reflector to improve visibility of laser beam, a distance had to be similarly measured to determine the working points, and this means that much complicated procedure was required for the marking operation.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a system, by which it is possible to detect an object reflector and to measure the distance to the object reflector while reciprocal operation of the laser beam is continued to improve visibility, and also to perform marking operation without using additional devices such as a tape measure and to easily set the tilting direction.
To attain the above object, the rotary laser irradiating system of the present invention comprises a laser light source, a range finding unit, a rotator for irradiating a laser beam from the laser light source and a range-finding light from the range-finding unit onto a reference plane by rotary irradiation, and scanning means for deflecting the laser beam from the laser light source on the reference plane. Also, the present invention provides the rotary laser irradiating system as described above, wherein the system further comprises an encoder for detecting an irradiating direction of the rotator and a photodetection unit for receiving the laser beam reflected by an object reflector positioned on the reference plane, wherein the range-finding light is directed to the object reflector based on outputs of the photodetection unit and the encoder, and the laser beam is irradiated for scanning. Further, the rotary laser irradiating system according to the present invention comprises a laser light source, a range-finding unit, a rotator for irradiating a laser beam from the laser light source and a range-finding light from a range-finding unit to a reference plane by rotary irradiation, an encoder for detecting an irradiating direction of the rotator, a tilt sensor for detecting horizontality of a plane including a rotation shaft of the rotator, and scanning means for deflecting the laser beam from the laser light source on the reference plane. Also, the present invention provides a rotary laser irradiating system as described above, wherein the system further comprises a photodetection unit for receiving the laser beam reflected by an object reflector positioned on the reference plane, and the range-finding light is directed to the object reflector based on outputs of the photodetection unit and the encoder and the laser beam is irradiated for scanning. Further, the present invention provides a rotary laser irradiating system as described above, wherein the laser beam from the laser light source is visible light, and the range-finding light from the range-finding unit is invisible light. Also, the present invention provides a rotary laser irradiating system as described above, wherein the scanning means is provided on the rotator. Further, the present invention provides a rotary laser irradiating system as described above, wherein the system further comprises an encoder for detecting an irradiating direction of the rotator, scanning means for deflecting the laser beam arranged on an optical path between the laser light source and the rotator, an image rotator arranged on an optical path between the scanning means and the rotator and for rotating the laser beam from the scanning means, and control means for controlling the rotator so that a laser reference plane is formed in a predetermine direction at a predetermined position, wherein the image rotator is interlocked in such manner that the image rotator is rotated by ½turn while the rotator is rotated by one turn. Also, the present invention provides a rotary laser irradiating system as described above, wherein a focusing optical system is provided on an optical path between the image rotator and the rotator in order that laser beam is focused at the position of the object reflector based on the distance measured by the range-finding unit. Further, the present invention provides a rotary laser irradiating system as described above, wherein the laser beam emitted from the light emitting unit is a polarized laser beam, and there are provided a first detecting unit and a second detecting unit for receiving light beams with different directions of polarization respectively on the photodetection unit. Also, in the rotary laser irradiating system of the present invention, the object reflector has two kinds of reflection surfaces and one kind of the reflection surfaces reflects the polarized laser beam while maintaining the direction of polarization and the other kind of the reflection surfaces reflects the polarized laser beam while converting the direction of polarization, the two kinds of the reflection surfaces constitute at least one reflection pattern, and the first detecting unit and the second detecting unit perform a predetermined processing (e.g. selective processing to select rotary scanning mode or range-finding mode for the rotary laser irradiating system) based on the photodetection of the reflection pattern from the object reflector. Further, the present invention provides a rotary laser irradiating system as described above, wherein a first position and a second position on the object refl
Kodaira Jun-ichi
Ohtomo Fumio
Kabushiki Kaisha TOPCON
Le Que T.
Luu Thanh X.
Nields & Lemack
LandOfFree
Rotary laser irradiating system and object reflector for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotary laser irradiating system and object reflector for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary laser irradiating system and object reflector for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2931199