Package making – Methods – Filling preformed receptacle
Reexamination Certificate
1999-01-12
2003-04-29
Kim, Eugene (Department: 3721)
Package making
Methods
Filling preformed receptacle
C053S443000, C198S428000, C198S431000
Reexamination Certificate
active
06553743
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the production handling of pouches and, more specifically, to an improved rotary knife and transfer apparatus used in connection with a pouch form, fill, and seal machine, the knife capable of severing pouches from a pouch train and selectively discharging pouches for downstream cartoning or other packing or handling.
BACKGROUND OF THE INVENTION
In typical pouch machines, a flat web of heat sealable material is continuously fed from upstream of the pouch machine and longitudinally folded upon itself by a plow or similar device. In this form, the thus-folded web is fed about a sealer which contacts the folded web along vertical heated land areas to form transverse vertical seals, and, thus, a series of open-top pouches along the web. The web of open-top pouches is passed around a filler wheel, filled with product and then sealed along the top edge of the web. The web of filled pouches then passes downstream to a motor-driven rotary knife apparatus which cuts the web along the transverse vertical seals into separate individual pouches and deposits them onto a transfer for subsequent cartoning or other secondary packaging.
In one earlier system, pouches are dropped directly from the rotary knife onto a conveyor parallel with the rotary knife axis and feeding a downstream cartoner or hand packer, for example. In another earlier system, pouches are transferred to a courier or transfer wheel which feeds a conveyor operating perpendicular to the rotary knife axis for conveying pouches to a downstream cartoner. This is frequently referred to as a “direct drop” system and where the conveyor comprises buckets for receiving stacks of pouches, the conveyor as described is a direct drop bucket conveyor. It should be understood then that a direct drop conveyor could be a bucket conveyor or some other form of direct drop conveyor so long as it operates perpendicular to the rotary knife or wheel axis. In further known configuration, pouches have been dropped from both knife and transfer wheel onto two separate conveyors, parallel to the rotary knife axis, for feeding downstream cartoners wherein both conveyors operate in directions parallel to the axes of rotation of the knife and transfer wheel. These are typically not referred to as direct drop conveyors.
Prior high volume throughput packaging systems use two or more cartoners. These cartoners are typically fed by pouch systems each having a separate rotary knife for each cartoner. For example, where pouches are to be cartoned automatically, a transfer wheel is used to transfer cut pouches from a knife hub directly drop pouches in conveyor buckets feeding the cartoners. On the other hand, when pouches are shingled or to be hand-packed, they are dropped onto a shingle conveyor as noted above by the rotary knife hub itself. The limitations of these two different systems are significant.
But first, a further brief background will be helpful in appreciating the invention. It will be appreciated that past rotary knives have both major and minor knife hubs, each operating about a respective axis of rotation with each axis being parallel to the other. Examples of this configuration are disclosed in U.S. Pat. Nos. 3,597,898; 3,961,697; 4,872,382; 5,220,993; 5,222,422; and 5,575,187, each of which are herewith expressly incorporated herein by reference.
When a transfer wheel is used with such a knife, it too operates about another respective axis of rotation which is also parallel to the respective axes of rotation of the major and minor knife hubs. One prior example of such a transfer wheel apparatus is disclosed in U.S. Pat. No. 5,220,993 which is also herewith expressly incorporated herein by reference.
Pouch drop off from the major knife hub onto a conveyor operating perpendicular to the aforementioned axes of rotation is illustrated at least in U.S. Pat. Nos. 4,872,382 and 5,222,422, while pouch drop off from the major knife hub to a conveyor (other than a direct drop conveyor as defined herein) operating parallel to the respective axes of rotation is illustrated in at least U.S. Pat. No. 3,961, 697. Pouch drop off from a transfer wheel to a conveyor operating parallel to the axes of rotation is illustrated in at least U.S. Pat. No. 5,220,993.
As noted above, a further embodiment where pouches are dropped from both a major knife hub and a transfer wheel onto two separate single or multiple lane conveyors operating parallel to the aforesaid axes of rotation is also known. Where pouches are dropped from either knife hub or transfer wheel onto a conveyor parallel with their axes of rotation, the pouches are typically dropped in singled or shingled orientation for downstream hand packing or other pouch handling and orientation before packing.
Throughout this application, references are made to the direction of operation of conveyors or the direction of transport of pouches thereon. This refers to the direction of the operation of the conveyor as it receives pouches from the drop off point of a knife hub or transfer wheel, and not necessarily to any later direction of the conveyor which may be otherwise directed.
In most high speed cartoning systems, it is desirable to directly drop pouches onto a direct drop conveyor such as into a bucket of a bucket conveyor to form a select count pouch stack which is then inserted by a cartoner into a carton in a single or multiple stack format. Such a conveyor is most conveniently operated in a direction perpendicular to the axes of knife and transfer wheel orientation to facilitate dropping a select count of pouches into each bucket. Thus the duration of operative movement of such buckets is in the same direction pouches are ejected from the knife or transfer wheel. This permits pouches to be easily stacked on the conveyor and perhaps even more speed or throughput than where pouches are dropped onto a non-direct drop conveyor operating in parallel with knife or transfer wheel axis. In such a case, the direction of pouch travel is changed 90 degrees between its motion on knife hub or wheel and its conveyed motion and the duration of any target location of the conveyor under the knife or wheel in an operable or drop area is shorter than with the other conveyors operating perpendicularly to the axes of rotation. Such conveyors are thus not generally capable of producing pouches in desired stack counts and may be slower than higher conveyor speeds desired where multiple count pouch stacks are to be handled in an automated cartoner.
Of perhaps most significance, however, is the desire to use a direct drop conveyor to produce stacks of pouches and eliminate the need to have downstream transfers or other orienting devices. Where pouches are dropped onto conveyors moving in directions parallel to the knife or wheel axes of rotation, further downstream equipment is necessary to handle, combine or orient them for final packing. This requires more equipment, more complexity and more floor space, and may slow the overall throughput.
Morever, another difficulty inherent in such non-direct drop conveyors is the waste of pouches or product. When a system is stopped, or even slowed, there exists a number of pouches on the conveyor between the knife and the downstream pouch handling or cartoning apparatus. It is difficult to keep track of the number or position of these pouches, particularly when shingled, and they are frequently rejected or wasted in the subsequent start up. The waste of “work in progress”, i.e. pouches, is undesirable and it is desired to be able to make any changeover or handling any system slow down or stop without wasting work in progress.
In this regard, it will be appreciated that the direct drop conveyor significantly reduces the aspect of wasted work in progress. Since the pouches are dropped directly into stacks on the direct drop conveyor, they are useful and need not be wasted; they can be packed without additional downstream transfer equipment, as contrasted to the uncertain handling of indeterminate pouches on a non-direct drop conveyor moving thro
Makutonin Boris E.
Oliverio Frank G.
Zdinak Matthew J.
Harmon Christopher
Kim Eugene
R.A. Jones & Co. Inc.
Wood Herron & Evans LLP
LandOfFree
Rotary knife and transfer apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rotary knife and transfer apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary knife and transfer apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3096068